Chapter 10

Complex Vectors and Matrices

10.1 Complex Numbers

A complete presentation of linear algebra must include complex numbers. Even when the
matrix is real, the eigenvalues and eigenvectors are often complex. Example: A 2 by 2
rotation matrix has no real eigenvectors. Every vector in the plane turns by —its direction
changes. But the rotation matrix has complex eigenvectors (1,7) and (1, —i).

Notice that those eigenvectors are connected by changing i to —i. For a real matrix, the
eigenvectors come in “conjugate pairs.” The eigenvalues of rotation by @ are also conjugate
complex numbers ' and e~'%, We must move from R” to C”.

The second reason for allowing complex numbers goes beyond A and x to the matrix A.
The matrix itself may be complex. We will devote a whole section to the most important
example—the Fourier matrix. Engineering and science and music and economics all use
Fourier series. In reality the series is finite, not infinite. Computing the coefficients in
cie’* + cpe'?* + ... 4 c,e™* is a linear algebra problem.

This section gives the main facts about complex numbers. It is a review for some
students and a reference for everyone. Everything comes from i? = —1. The Fast Fourier

Transform applies the amazing formula 2™/ = 1. Add angles when ¢'? multiplies ¢?%:

The square of e2™/4 = | is ¢4™!/4 = _1. The fourth power of e**i/4 js ¢27i = 1.

Adding and Multiplying Complex Numbers

Start with the imaginary number i. Everybody knows that x> = —1 has no real solution.
When you square a real number, the answer is never negative. So the world has agreed on
a solution called i. (Except that electrical engineers call it j.) Imaginary numbers follow
the normal rules of addition and multiplication, with one difference. Replace i* by —1.
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494 Chapter 10. Complex Vectors and Matrices

__ Add: (3+2i)+ (B +2i)=6+4i
. Multiply: (3 +2i)(1 —i) =3+ 2i —3i —2i2 =5—1i.

Ifladd 3 +i to 1 — i, the answer is 4. The real numbers 3 + 1 stay separate from the
imaginary numbers i — i. We are adding the vectors (3, 1) and (1, —1).
The number (1 + i)? is 1 + i times 1 4 i. The rules give the surprising answer 2i:

A+DA+D)=14+i+i+i*>=2i

In the complex plane, 1+ is at an angle of 45°. It is like the vector (1, 1). When we square
1 4 i to get 2i, the angle doubles to 90°. If we square again, the answer is (2i)2 = —4.
The 90° angle doubled to 180°, the direction of a negative real number.

A real number is just a complex number z = a + bi, with zero imaginary part: b = 0.
A pure imaginary number has ¢ = 0:

The real partis a = Re (a + bi). The imaginary partis b =1Im (a + bi).

The Complex Plane

Complex numbers correspond to points in a plane. Real numbers go along the x axis. Pure
imaginary numbers are on the y axis. The complex number 3 + 2i is at the point with
coordinates (3, 2). The number zero, which is 0 4 01, is at the origin.

Adding and subtracting complex numbers is like adding and subtracting vectors in the
plane. The real component stays separate from the imaginary component. The vectors go
head-to-tail as usual. The complex plane C! is like the ordinary two-dimensional plane R?,
except that we multiply complex numbers and we didn’t multiply vectors.

Now comes an important idea. The complex conjugate of 3 + 2i is 3 — 2i. The
complex conjugate of z = 1 —i isZ = 1 + {. In general the conjugate of z = a + bi is
7 = a — bi. (Some writers use a “bar”’ on the number and others use a “star”: 7 = z*.)
The imaginary parts of z and “z bar” have opposite signs. In the complex plane, Z is the
image of z on the other side of the real axis.

Two useful facts. When we multiply conjugates zy and z,, we get the conjugate of z1z3.
When we add z; and 75, we get the conjugate of z; + z3:

Z1+22=(3—-2i)+ (1 +i) = 4—i. This is the conjugate of z; + z; = 4 + i.
z1 X272 = (3—2i)x (1 +1i) = 5+ . Thisis the conjugate of z; x zy = 5—1.

Adding and multiplying is exactly what linear algebra needs. By taking conjugates of
Ax = Ax, when A is real, we have another eigenvalue A and its eigenvector X

If Ax = Ax and A is real then Ax = AX. (1)
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2i 1 Imaginary

. z=3+4+2
Complex axis
plane : r=|z|=+32+22
c[lelelte —1 l t—> Real axis

2 3
=i

—2i - Conjugate z = 3 — 2i

Figure 10.1: The number z = a + bi corresponds to the point (a, b) and the vector [ § ].

Something special happens when z = 3 + 2i combines with its own complex conjugate
Z = 3 — 2i. The result from adding z + Z or multiplying zZ is always real:

z +Z = real B+2))+@B—-2i)=6 (real)
zZ = real (B+2i)x(3—2i)=9+6i —6i—4i> =13 (real).

The sum of z = a + bi and its conjugate Z = a — bi is the real number 2a. The product
of z times Z is the real number a? + b2:

2)

The next step with complex numbers is 1/z. How to divide by a + ib? The best idea is to
multiply by Z/Z. That produces zZ in the denominator, which is a + b

i . 1 1 3-2i 3-2i
a+ib ~ a+iba—-ib  a®+4b* '

342/ 3+2i3—-2i 13

In case a® + b? = 1, this says that (a + ib) ™" is @ — ib. On the unit circle, 1/z equals z.
Later we will say: 1/e%% is e=/? (the conjugate). A better way to multiply and divide is to
use the polar form with distance r and angle 6.

The Polar Form re®?
The square root of a® + b? is |z|. This is the absolute value (or modulus) of the number

z = a + ib. The square root |z| is also written r, because it is the distance from O to z.
The real number r in the polar form gives the size of the complex number z:

This is called r.

The absolute value of z =a +ib is |Z a+ »
The absolute valueof z =3 +2i is |z| = v/32+22. Thisisr = +/13.
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The other part of the polar form is the angle 8. The angle for z = 5 is § = 0 (because
this z is real and positive). The angle for z = 3i is n/2 radians. The angle for a negative
z = —9is n radians. The angle doubles when the number is squared. The polar form is
excellent for multiplying complex numbers (not good for addition).

When the distance is 7 and the angle is 8, trigonometry gives the other two sides of the
triangle. The real part (along the bottom) is a = r cos 8. The imaginary part (up or down)
is b = r sin . Put those together, and the rectangular form becomes the polar form:

Thefiniumberl z =a +ib | is also z= rcosB+ ir ‘si_l‘l103.,; This zs reiio

Note: cos@ + i sin@ has absolute value r = 1 because cos*> 8 + sin?® = 1. Thus
cos 0 + i sin @ lies on the circle of radius 1—the unit circle.

Example 1 Find r and 8 for z = 1 4+ i and also for the conjugate Z = 1 —i.

Solution The absolute value is the same for z and Z. Forz = 14i itis# = /1 + 1 = +/2:
lz2=12+12=2 andalso [Z]>?=1%+ (-1)*>=2.

The distance from the center is +/2. What about the angle? The number 1 + i is at the
point (1, 1) in the complex plane. The angle to that point is 7 /4 radians or 45°. The cosine
is 1/4/2 and the sine is 1/+/2. Combining r and 6 brings back z = 1 + i:

1 1
rcos@ + irsiné =«/§(———)+ «/5(—) =141
irsi N i ;i

The angle to the conjugate 1 —i can be positive or negative. We can go to 77 /4 radians
which is 315°. Or we can go backwards through a negative angle, to —m /4 radians or
—45°. If z is at angle 0, its conjugate 7 is at 2w — 0 and also at —0.

We can freely add 27 or 47 or —2x to any angle! Those go full circles so the final point
is the same. This explains why there are infinitely many choices of 4. Often we select the
angle between zero and 2 radians. But —@ is very useful for the conjugate Z.

A

Powers and Products: Polar Form

Computing (1 + i)? and (1 + i)® is quickest in polar form. That form has r = +/2 and
6 = m/4 (or 45°). If we square the absolute value to get 72 = 2, and double the angle to
get 20 = /2 (or 90°), we have (1 + i)2. For the eighth power we need r® and 86:

(1+i)® r8=2.2.2.2=16 and 80:8-%:27:.
This means: (1 + i)® has absolute value 16 and angle 27. The eighth power of 1+ i is the

real number 16.
Powers are easy in polar form. So is multiplication of complex numbers.
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The ;p'QIér* form of z* has absolute value ™. The -e‘ingle -'»is. n times 6:

 Thenth powerof z=r(cos® +ising) is 2" =r"(cosnd +isinnd). (3)

In that case z multiplies itself. In all cases, multiply r’s and add the angles:
r(cos 6 + i sin 0) times r'(cos 6’ + i sin6) = rr'(cos(d + 0') + i sin(6 + 6")). (4)

One way to understand this is by trigonometry. Concentrate on angles. Why do we get the
double angle 26 for z2?

(cos 6 + i sinf) x (cos 8 + i sinf) = cos? 6 + i2sin®  + 2i sin 6 cos 6.

The real part cos? 6 —sin? 8 is cos 20. The imaginary part 2 sin 8 cos 8 is sin 26. Those are
the “double angle” formulas. They show that 6 in z becomes 26 in z2.

There is a second way to understand the rule for z”. It uses the only amazing formula
in this section. Remember that cos 8 + i sin 6 has absolute value 1. The cosine is made up
of even powers, starting with 1 — %92. The sine is made up of odd powers, starting with

6 — %63. The beautiful fact is that ¢’? combines both of those series into cos @ -+ i sin :

1 1 . 1 1
e =1+4+x+ §x2+6x3+--- becomes e'® =1 +i6 +55262+ gi-”93+---

Write —1 for i2 to see 1 — %92. The complex number e*® is cos@ + i sin 8 :

 Euler’s Formula.  ¢'® = cos0 + i sin6 gives ‘z=rcosf +irsinf = reie 7 (5)
The special choice 6 = 27 gives cos 27 +i sin 2z which is 1. Somehow the infinite series
e?™ =1+ 2mwi + 3(2ni)* + -+ addsup to 1.

Now multiply e/? times e’ 9. Angles add for the same reason that exponents add:

3. 5 9 .. 20 o/

e? times €’ is e e’ times e is e €'? times i@+6)

is e
The powers (re'?)" are equal to r*e’ " They stay on the unit circle when r = 1
and " = 1. Then we find » different numbers whose nth powers equal 1:

Set w = e2miln, The ntﬁpower& ofl, w, wz, , w"“lalleqaall ‘.

Those are the “nth roots of 1.” They solve the equation z* = 1. They are equally spaced
around the unit circle in Figure 10.2b, where the full 2 is divided by n. Multiply their
angles by 7 to take nth powers. That gives w” = ¢! whichis 1. Also (w?)"* = e*"! = 1.
Each of those numbers, to the nth power, comes around the unit circle to 1.
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6 solutions to z" =1

RICEYD

Figure 10.2: (a) Multiplying ¢’® times ¢®. (b) The nth power of €27/" is 27! = 1,

These n roots of 1 are the key numbers for signal processing. The Discrete Fourier
Transform uses w and its powers. Section 10.3 shows how to decompose a vector (a signal)
into n frequencies by the Fast Fourier Transform.

® REVIEW OF THE KEY IDEAS =

1. Addinga + ib to ¢ + id is like adding (a, b) + (¢, d). Use i? = —1 to multiply.
2. The conjugate of z = a + bi = re'® isz = z* =a — bi = re™'?,
3. z times Z is re!f times re%. Thisis r? = |z|2 = a2 + b2 (real).

4. Powers and products are easy in polar form z = re’?. Multiply r’s and add 6’s.

Problem Set 10.1

Questions 1-8 are about operations on complex numbers,

1 Add and multiply each pair of complex numbers:

(a)y 2+1i,2—1i b)) —-14i,—-1+1i (¢) cos@ +isinf,cosf —isinb
2 Locate these points on the complex plane. Simplify them if necessary:

@ 2+i () Q+i)? © sz @ 2+i]

3 Find the absolute value » = |z| of these four numbers. If @ is the angle for 6 — 8i,
what are the angles for the other three numbers?

@ 6-8 () (6-8)* () 25 (@ (6+8i)?
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4 If|z] = 2 and |w| = 3 then |z x w| = and |z + w| =
and |z —w| < '

and |z/w| =

5 Find a + ib for the numbers at angles 30°, 60°, 90°, 120° on the unit circle. If w is
the number at 30°, check that w? is at 60°. What power of w equals 1?

6 If z = rcos6 + irsinf then 1/z has absolute value
polar form is . Multiply z x 1/z to get 1.

and angle . Its

7 The complex multiplication M = (a + bi)(c + di) is a 2 by 2 real multiplication

a =b||lc|_
b al|ld] ‘
The right side contains the real and imaginary parts of M. Test M = (1+43i)(1-3i).

8 A = A; +iA3is a complex n by n matrix and b = b, + i b, is a complex vector.
The solution to Ax = b is x| + ix,. Write Ax = b as a real system of size 2n:

Complex n by n x| _ |5
Real 2n by 2n x2| | b2 |’
Questions 9-16 are about the conjugatez = a — ib = re™® = z*,

9 Write down the complex conjugate of each number by changing i to —i:

(@2—i ®) 2-NU-=i) (¢) ™2 (whichisi)
d) " =—1 (&) 31X (whichisalsoi) () 9=

10  The sum z 4 Z is always . The difference z — z is always . Assume
z 7 0. The product z x Z is always . The ratio z /Z always has absolute value

11 For a real matrix, the conjugate of Ax = Ax is A¥ = AX. This proves two things: X
is another eigenvalue and X is its eigenvector. Find the eigenvalues A, A and eigen-
vectors x,x of A =[a b; —b al.

12  The eigenvalues of a real 2 by 2 matrix come from the quadratic formula:

det[“;’L dﬁl]zlz—(a+d)/1+(ad—bc)=0

gives the two eigenvalues A = [a +d £ +/(a +d)?—4(ad — bc)] /2.

(a) Ifa = b = d = 1, the eigenvalues are complex when c is

(b) What are the eigenvalues when ad = bc¢?

(c) The two eigenvalues (plus sign and minus sign) are not always conjugates of
each other. Why not?
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13 In Problem 12 the eigenvalues are not real when (trace)? = (a + d)? is smaller than
. Show that the A’s are real when be > 0.

14  Find the eigenvalues and eigenvectors of this permutation matrix:

has det(Py—Al) =

15 Extend P, above to Pg (five 1’s below the diagonal and one in the corner). Find
det(Pg — AT) and the six eigenvalues in the complex plane.

16 A real skew-symmetric matrix (AT = —A) has pure imaginary eigenvalues. First
proof: If Ax = Ax then block multiplication gives

o alla] =i

This block matrix is symmetric. Its eigenvalues must be I'SoAis .
Questions 17-24 are about the form re‘? of the complex number r cos @ + ir sin 6.

17  Write these numbers in Euler’s form re’?. Then square each number:
(@ 14+ 4/3i (b) cos26 +isin28 (c) -7i (d 5-5i.

18  Find the absolute value and the angle for z = sin 8 + i cos 6 (careful). Locate this z
in the complex plane. Multiply z by cos @ + i sin 8 to get .

19  Draw all eight solutions of z8 = 1 in the complex plane. What is the rectangular
form a + ib of the root z = W = exp(—27i/8)?

20 Locate the cube roots of 1 in the complex plane. Locate the cube roots of —1. To-
gether these are the sixth roots of

21 By comparing €% = cos30 + i sin30 with (¢/°)> = (cos @ + i sin )3, find the
“triple angle” formulas for cos 36 and sin 36 in terms of cos & and sin 6.

22  Suppose the conjugate Z is equal to the reciprocal 1/z. What are all possible z’s?

23  (a) Whydo e’ and i® both have absolute value 17
(b) In the complex plane put stars near the points ¢’ and i.

(c) The number i€ could be (¢/™/2)¢ or (e%7%/2)¢. Are those equal?
24  Draw the paths of these numbers from ¢t = 0 to t = 2 in the complex plane:

(a) eit (b) e(—1+i)t — e—-teit (c) (——l)t — etn’i.
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10.2 Hermitian and Unitary Matrices

The main message of this section can be presented in one sentence: When you franspose
a complex vector z or matrix A, take the complex conjugate too. Don't stop at z” or A”.
Reverse the signs of all imaginary parts. From a column vector with z; = a; + ibj,
the good row vector is the conjugate transpose with componentsa; —ib;:

Conjugate transpose  z' =[z; -+ Z,|=[a; —iby -+ a,—ib,]. (1)

Here is one reason to go to Z. The length squared of a real vector is x7 + -+ + x2. The
length squared of a complex vector is not z% + «-- + z2. With that wrong definition, the
length of (1,i) would be 12 + i2 = 0. A nonzero vector would have zero length—not
good. Other vectors would have complex lengths. Instead of (a + bi)? we want a® + b2,
the absolute value squared. This is (a + bi) times (a — bi).

For each component we want z; times Z ;, which is |2;|> = a% +b7. That comes when
the components of z multiply the components of z:

Z1
(21 Zu]| ¢ | =1zaP 4+ +|za>. Thisis 27z = ||z]° @)

Zp

Length
squared

Now the squared length of (1,7) is 12 4 |i|?> = 2. The length is +/2. The squared length of
(1 +1i,1—1)is 4. The only vectors with zero length are zero vectors.

fETz=sz =|z112 4+ -+ + |zn|?

Before going further we replace two symbols by one symbol. Instead of a bar for the
conjugate and T for the transpose, we just use a superscript H. Thus 7' = z8. This is
“z Hermitian,” the conjugate transpose of z. The new word is pronounced “Hermeeshan.”
The new symbol applies also to matrices: The conjugate transpose of a matrix A4 is AT

Another popular notation is A*. The MATLAB transpose command ’ automatically
takes complex conjugates (A4’ is A™).

. . . —T .
The vector z is Z7. The matrix A™ is 4 , the conjugate transpose of A4:

1 I 1 0
H _ « o » —_ H __
A" = “A Hermitian” If A = [0 1+i] then A" = l:_i 1__i]

Complex Inner Products

For real vectors, the length squared is xTx—ithe inner product of x with itself. For

complex vectors, the length squared is zz. It will be very desirable if zHz is the inner
product of z with itself. To make that happen, the complex inner product should use the
conjugate transpose (not just the transpose). The inner product sees no change when the

vectors are real, but there is a definite effect from choosing %", when u is complex:
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Hy:

DEFINITION The ilnvnérj_'pm‘dmit of '»real_.jorvcampléxii‘Vécfofs->~' u and v is o

With complex vectors, #Hv is different from v"u. The order of the vectors is now impor-
tant. In fact v8u = vyu; + -+ + Tru, is the complex conjugate of uHv. We have to put
up with a few inconveniences for the greater good.

Example 1 The inner product of u = [ll] with v = [11] is{1 —i] [11] =0.

Example 1 is surprising. Those vectors (1,i) and (i, 1) don’t look perpendicular. But they
are. A zero inner product still means that the (complex) vectors are orthogonal. Similarly
the vector (1, i) is orthogonal to the vector (1, —i). Their inner productis 1 — 1 = 0. We
are correctly getting zero for the inner product—where we would be incorrectly getting
zero for the length of (1, i) if we forgot to take the conjugate.

Note We have chosen to conjugate the first vector #. Some authors choose the second
vector v. Their complex inner product would be #73. It is a free choice, as long as we
stick to it. We wanted to use the single symbol H in the next formula too:

The inner product of Au with v equals the inner product of u with A%v:
A" = “adjoint” of A (Aw)v = ufi(4%0). @)
The conjugate of Au is Au. Transposing it gives @A as usual. This is a? AH, Everything

that should work, does work. The rule for ¥ comes from the rule for T. That applies to
products of matrices:

A

The conjugate transposeof AB is (AB)" = BRAY.
We constantly use the fact that (¢ — ib)(¢c — id) is the conjugate of (a + ib)(c + id).

Hermitian Matrices

Among real matrices, the symmetric matrices form the most important special class: A =
A", They have real eigenvalues and a full set of orthogonal eigenvectors. The diagonalizing
matrix S is an orthogonal matrix (J. Every symmetric matrix can be written as A =
QAQ ! and also as A = QAQT (because 0~ ! = Q7). All this follows from a;; = aj;,
when A is real.
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Among complex matrices, the special class contains the Hermitian matrices:
A = AM. The condition on the entries is a;; = @j;. In this case we say that “4 is
Hermitian.” Every real symmetric matrix is Hermitian, because taking its conjugate has no
effect. The next matrix is also Hermitian, A = AH ;

E le2 A= 2 3—-3i The main diagonal is real since a;; = a;;.
xample {3430 5 Across it are conjugates 3 + 3i and 3 — 3i.

This example will illustrate the three crucial properties of all Hermitian matrices.

If A = A¥ and 3 is any vector, the number 77 Az §

Quick proof: z7 Az is certainly 1 by 1. Take its conjugate transpose:
P P
(ZHAn! = ZH AR which is 2% Az again.

This used A = AY. So the number zP Az equals its conjugate and must be real. Here is
that “energy” zH Az in our example:

[E 3 ] 2 3-3i z1 | =2Z121 + 52222 + (3 —3i)Z1z2 + (B + 3i)z12>.
be2li343i 5 Z5 diagonal off-diagonal

The terms 2|z;|? and 5|z5|? from the diagonal are both real. The off-diagonal terms are
conjugates of each other—so their sum is real. (The imaginary parts cancel when we add.)
The whole expression zH Az is real, and this will make A real.

Every eigenvalue of a Hermitian matrix is real

Proof Suppose Az = Az. Multiply both sides by z% to get z" Az = AzMz. On the left
side, zH Az is real. On the right side, z"z is the length squared, real and positive. So the
ratio A = z% Az/z"z is a real number. Q.E.D.

The example above has eigenvalues & = 8 and A = —1, real because A = 4" :

’2‘* 3730 A2 A+ 10— 3+ 3iP

34+43i 5-A

=270 4+10-18=(A—-8)(A +1).

The eigenveciors of a Hermitian matrix. are orthogonal (whe
MfAz=2Azand Ay = By then yfz = 0.

different eigenvalue

Proof Multiply Az = Az on the left by y. Multiply yH A" = By" on the right by z:

yHAz = AyPz and yHAHz = gylz. (5)
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The left sides are equal because A = AM. Therefore the right sides are equal. Since B is
different from A, the other factor y"z must be zero. The eigenvectors are orthogonal, as in
our example with A = 8 and 8 = —1:

(A‘SI)Z=[3J:631' 3:33i][§;]=[g] and Zz[ul-i]
(A+I)y=[3_s3i 3‘63"][;]: :

Take the inner product of those eigenvectors y and z:

. H ‘ [ _
Orthogonal eigenvectors ylz=[1+i —1] [1 + i] = 0.
These eigenvectors have squared length 12 4 12 + 12 = 3. After division by /3 they are
unit vectors. They were orthogonal, now they are orthonormal. They go into the columns
of the eigenvector matrix S, which diagonalizes A.

When A is real and symmetric, S is Q—an orthogonal matrix. Now A is complex and
Hermitian. Its eigenvectors are complex and orthonormal. The eigenvector matrix S is like
Q, but complex. We now assign a new name “unitary” and a new letter U to a complex
orthogonal matrix.

Unitary Matrices

A unitary matrix U is a (complex) square matrix that has orthonormal columns.
U is the complex equivalent of Q. The eigenvectors of A give a perfect example:

. . 1 1 1—i
Unitary matrix U= E [1 i -1 ]

This U is also a Hermitian matrix. I didn’t expect that! The example is almost too perfect.
We will see that the eigenvalues of this U must be 1 and —1.

The matrix test for real orthonormal columns was QTQ = I. When QT multiplies O,
the zero inner products appear off the diagonal. In the complex case, @ becomes U. The
columns show themselves as orthonormal when U multiplies U. The inner products of
the columns are again 1 and 0. They fillup UBU = I :

Suppose U (with orthonormal columns) multiplies any z. The vector length stays the
same, because zHUHUz = zHz. If z is an eigenvector of U we learn something more:
The eigenvalues of unitary (and orthogonal) matrices all have absolute value |1| = 1.
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Our 2 by 2 example is both Hermitian (U = U") and unitary (U™! = UM). That
means real eigenvalues (A = A1), and it means |A| = 1. A real number with absolute value
1 has only two possibilities: The eigenvalues are 1 or —1.

Since the trace is zero for our U, one eigenvalue is A = 1 and the otheris A = —1.

Example 3 The 3 by 3 Fourier matrix is in Figure 10.3. Is it Hermitian? Is it uni-
tary? Fj is certainly symmetric. It equals its transpose. But it doesn’t equal its conjugate
transpose—it is not Hermitian. If you change i to —i, you get a different matrix.

eZJri /3
1 1 1
Fourier _ L prmis amiss
1 matrix NE] - ;
i e4m/3 e2mi/3
e47ri /3

Figure 10.3: The cube roots of 1 go into the Fourier matrix F = Fj3.

Is F unitary? Yes. The squared length of every column is —;-(1 + 1 + 1) (unit vector).

The first column is orthogonal to the second column because 1 + ¢27i/3 4 g47i/3 =
This is the sum of the three numbers marked in Figure 10.3.

Notice the symmetry of the figure. If you rotate it by 120°, the three points are in the
same position. Therefore their sum .S also stays in the same position! The only possible
sum in the same position after 120° rotation is S = 0.

Is column 2 of F orthogonal to column 3? Their dot product looks like
A + 53 4 5% = L1+ 1+ ).

This is not zero. The answer is wrong because we forgot to take complex conjugates. The
complex inner product uses ¥ not T:

(Column 2)H(Column 3) — %‘(l .1 + e—23ri/3e47ti/3 + e——4:rri/3827ri/3)

— %(1 +eZ:rti/3 + e—ZJl’i/3) = 0.

So we do have orthogonality. Conclusion: F is a unitary matrix.

The next section will study the n by » Fourier matrices. Among all complex unitary
matrices, these are the most important. When we multiply a vector by F, we are comput-
ing its Discrete Fourier Transform. When we multiply by F~!, we are computing the
inverse transform. The special property of unitary matrices is that F~! = FH, The inverse
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transform only differs by changing i to —i:

1 1 1
Change i to —i FloFH= __ |1 ¢ 27i/3 p—4mi/3
\/:_3- 1 e—47ri/3 e—2m’/3

Everyone who works with F recognizes its value. The last section of the book will bring
together Fourier analysis and complex numbers and linear algebra.

This section ends with a table to translate between real and complex—for vectors and
for matrices:

Real versus Complex

¢

C": vectors with n complex components
length: [|z]|* = |z1[* + -+ + |z, [?
conjugate transpose: (AM);; ;= =A;; ji
product rule: (AB)Y = BHAH

R": vectors with n real components
length: [|x |2 = x% +-+- + x2
transpose: (AT),J = Aj

product rule: (AB)T = BTAT

dot product: x y =x1y1+ -+ Xn¥n
reason for AT: (Ax)Ty = xT(ATy)
orthogonality: xTy = 0

inner product: ulv =701 + -+ + Wpop,
reason for A": (Au)lv = ul(4AHv)
orthogonality: ufv = 0

Hermitian matrices: 4 = A"

A = UAU71 = UAUY (real A)
skew-Hermitian matrices K" = — K

symmetric matrices: A = AT

A = 0AQ ! = QAQT (real A)

skew-symmetric matrices: KT = —K
orthogonal matrices: QT = Q™! unitary matrices: UH = U~}

orthonormal columns: URU = [

Ux)Uy) =x"y and |Uz]| = ||z]|

orthonormal columns: QTQ = I

(0x)"(Qy) = x"yand | Qx| = |x|

¢$¢¢$$$¢$$$¢

The columns and also the eigenvectors of Q and U are orthonormal. Every |A| = 1.

Problem Set 10.2

1 Find the lengths of & = (1 +i,1 —i,1 4+ 2i) and v = (i,i,i). Also find «"v and
vy,

2 Compute A" A4 and AA4H. Those are both matrices:

3 Solve Az = 0 to find a vector in the nullspace of 4 in Problem 2. Show that z is
orthogonal to the columns of A", Show that z is not orthogonal to the columns of
AT. The good row space is no longer C (AT). Now it is C (A™).
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4

10

11

12

13

14

Problem 3 indicates that the four fundamental subspaces are C(A) and N(A) and
and . Their dimensions are still ¥ and n — r and r and m — r. They are
still orthogonal subspaces. The symbol ! takes the place of T.

(a) Prove that AP A is always a Hermitian matrix.

(b) If Az = 0 then A" Az = 0. If AHAz = 0, multiply by z to prove that
Az = 0. The nullspaces of A and A" A are . Therefore A™4 is an
invertible Hermitian matrix when the nullspace of A contains only z = 0.

True or false (give a reason if true or a counterexample if false):

(a) If A is a real matrix then A + i/ is invertible.
(b) If A is a Hermitian matrix then 4 + i/ is invertible.
(¢) If U is a unitary matrix then 4 + i/ is invertible.

When you multiply a Hermitian matrix by a real number c, is ¢ A still Hermitian?
Show that i 4 is skew-Hermitian when A is Hermitian. The 3 by 3 Hermitian matrices
are a subspace provided the “scalars” are real numbers.

Which classes of matrices does P belong to: invertible, Hermitian, unitary?
0 i O
P=]10 0 i
i 0 O
Compute P2, P3, and P 190, What are the eigenvalues of P?

Find the unit eigenvectors of P in Problem 8, and put them into the columns of a
unitary matrix F'. What property of P makes these eigenvectors orthogonal?

Write down the 3 by 3 circulant matrix C = 2/ 4 5P. It has the same eigenvectors
as P in Problem 8. Find its eigenvalues.

If U and V are unitary matrices, show that U ! is unitary and also UV is unitary.
Start from UHU = I and VHV = T.

How do you know that the determinant of every Hermitian matrix is real?

The matrix A" A is not only Hermitian but also positive definite, when the columns
of A are independent. Proof: zH AH Az is positive if z is nonzero because

Diagonalize this Hermitian matrix to reach A = UAU®:

0 1—i
A:[z’+1 1]'
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Diagonalize this skew-Hermitian matrix to reach K = UAUH. All 1’s are

[0 -1+
K“L+i i ]

Diagonalize this orthogonal matrix to reach O = UAU™, Now all A’s are :

0= [cosO —sinQ]

sinf cos6

Diagonalize this unitary matrix V to reach V = UAUH, Again all A’s are :

1 1 1—1i
V=5 [1 +i -1 ] -
If vy,...,vy is an orthonormal basis for C*, the matrix with those columns is a

matrix. Show that any vector z equals (viz)v; +--- + (viiz)w,.

The functions e ** and e’* are orthogonal on the interval 0 < x < 27 because their
inner product is " =0.

The vectors v = (1,i,1),w = (i,1,0) and z = are an orthogonal basis for

If A = R 4 i§ is a Hermitian matrix, are its real and imaginary parts symmetric?
The (complex) dimension of C” is . Find a non-real basis for C”.
Describe all 1 by 1 and 2 by 2 Hermitian matrices and unitary matrices.

How are the eigenvalues of A" related to the eigenvalues of the square complex
matrix A?

If #%u = 1 show that / — 2uu® is Hermitian and also unitary. The rank-one matrix
uu'! is the projection onto what line in C*?

If A+ iB is a unitary matrix (A and B are real) show that 0 = [4 ~B] is an
orthogonal matrix.

If A+ iB is Hermitian (4 and B are real) show that [ § B | is symmetric.
Prove that the inverse of a Hermitian matrix is also Hermitian (transpose A~ 4 = I).
Diagonalize this matrix by constructing its eigenvalue matrix A and its eigenvector
matrix S: ) .

A=L+i 3]=A&

A matrix with orthonormal eigenvectors has the form A = UAU~! = UAUH.
Prove that AA® = AP A. These are exactly the normal matrices. Examples are
Hermitian, skew-Hermitian, and unitary matrices. Construct a 2 by 2 normal matrix
by choosing complex eigenvalues in A.
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10.3 The Fast Fourier Transform

Many applications of linear algebra take time to develop. It is not easy to explain them
in an hour. The teacher and the author must choose between completing the theory and
adding new applications. Often the theory wins, but this section is an exception. It explains
the most valuable numerical algorithm in the last century.

We want to multiply quickly by F and F 1, the Fourier matrix and its inverse. This
is achieved by the Fast Fourier Transform. An ordinary product F¢ uses n? multiplications
(F has n? entries). The FFT needs only n times 3 log, n. We will see how.

The FFT has revolutionized signal processing. Whole industries are speeded up by this
one idea. Electrical engineers are the first to know the difference—they take your Fourier
transform as they meet you (if you are a function). Fourier’s idea is to represent f as a
sum of harmonics cxe’**. The function is seen in frequency space through the coefficients
Ck, instead of physical space through its values f(x). The passage backward and forward
between ¢’s and f’s is by the Fourier transform. Fast passage is by the FFT.

Roots of Unity and the Fourier Matrix

Quadratic equations have two roots (or one repeated root). Equations of degree n have n
roots (counting repetitions). This is the Fundamental Theorem of Algebra, and to make it
true we must allow complex roots. This section is about the very special equation z” = 1.
The solutions z are the “nth roots of unity.” They are n evenly spaced points around the
unit circle in the complex plane.

Figure 10.4 shows the eight solutions to z® = 1. Their spacing is %(360°) = 45°. The

first root is at 45° or 0 = 2x/8 radians. It is the complex number w = ¢'® = ¢?27/8,

We call this number wg to emphasize that it is an 8th root. You could write it in terms of

cos 2—8”- and sin -2-87-5, but don’t do it. The seven other 8th roots are w2, w?3,..., w%, going

around the circle. Powers of w are best in polar form, because we work only with the

angles%,%,---,-l—gl=2n.
w? =i
' . 2 27
w3 w=e2’”/8=cos———|—ism—8—
27
4 _ _ Iy 8 =1
w 1 \ 8 w Real axis
7 — 2 . . 27w
w/ =W = cos — —1I sin —
w> 8 8
wh = —j

Figure 10.4: The eight solutions to z8 = L are 1, w, w?,...,w’ withw = (1 +i)/+/2.
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The fourth roots of 1 are also in the figure. They are i,—1,—i,1. The angle is now
27/4 or 90°. The first root wy = 2™/* is nothing but i. Even the square roots of 1
are seen, with w, = €27/2 = —1. Do not despise those square roots 1 and —1. The
idea behind the FFT is to go from an 8 by 8 Fourier matrix (containing powers of wg)
to the 4 by 4 matrix below (with powers of ws = i). The same idea goes from 4 to 2.
By exploiting the connections of Fg down to F4 and up to Fj¢ (and beyond), the FFT
makes multiplication by Fj24 very quick.

We describe the Fourier matrix, first for n = 4. Its rows contain powers of 1 and w and
w? and w3. These are the fourth roots of 1, and their powers come in a special order.

Fourier b1 12 ! ! 1 .12 .I
matrix P 1 w w wz _ |1 i i3
g4 1 w? w* w 1 i%2 % ¢

1 w? w® w® 1 {3 ¢ §°

The matrix is symmetric (F = F7). It is not Hermitian. Its main diagonal is not real. But
3 F is a unitary matrix, which means that (3 F)(3 F) = I:

The inverse changes from w = i to W = —i. That takes us from F to F. When the Fast
Fourier Transform gives a quick way to multiply by F, it does the same for F~!.

The unitary matrix is U = F/./n. We avoid that \/n and just put 1 outside F~!. The
main point is to multiply F' times the Fourier coefficients cg, ¢y, ¢2, ¢3!

4-point Yo } 1}) u}Z u}3 io
Fourier M| = Fe= 1 w2 wt wb Cl (1)
series 2 s e oll?

Y3 1 w w* w c3

The input is four complex coefficients ¢y, ¢y, ¢2,¢3. The output is four function values
Y0, Y1, Y2, y3. The first output yg = co + ¢1 + ¢2 + ¢3 is the value of the Fourier series at
x = 0. The second output is the value of that series ¥ cxe'** at x = 2 /4:

y1 = co + c1"2* 4 cpe ¥4 4 036!/ = ¢o 4 crw + crw? + caw®.

The third and fourth outputs y, and y; are the values of Y cie'** at x = 4x/4 and
x = 6m/4. These are finite Fourier series! They contain » = 4 terms and they are
evaluated at n = 4 points. Those points x = 0,25 /4,45 /4, 67 /4 are equally spaced.

The next point would be x = 8s/4 which is 27. Then the series is back to yg, because
e?™ is the same as ¢ = 1. Everything cycles around with period 4. In this world 2 + 2 is
0 because (w?)(w?) = w® = 1. We will follow the convention that j and k go from 0 to
n — 1 (instead of 1 to n). The “zeroth row” and “zeroth column” of F contain all ones.
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The by n Fourier matrix contains powers of w = e27/":

_1 1 1 . 1 17 CO 7] [ yo 7]
1w w? - w? 1 1

Fpe=|1 w> w* . w0Vl o =y [=y. @
1wl 20D 0D Yn—1

F, is symmetric but not Hermitian. Its columns are orthogonal, and F,F, = nl. Then
F;!is F,/n. The inverse contains powers of W, = e~27!/", Look at the pattern in F':

When we multiply ¢ by F,, we sum the series at n points. When we multiply y by F; !, we
find the coefficients c¢ from the function values y. In MATLAB that command is ¢ = fft(y).
The matrix F passes from “frequency space” to “physical space.”

Important note. Many authors prefer to work with @ = e 2%//N  which is the complex
conjugate of our w. (They often use the Greek omega, and I will do that to keep the two
options separate.) With this choice, their DFT matrix contains powers of @ not w. It is
conj (F') = complex conjugate of our F. This takes us to frequency space.

F is a completely reasonable choice! MATLAB uses @ = e~2%{/¥ The DFT matrix
ffti(eye(NN)) contains powers of Lhis number @ = W. The Fourier matrix with w’s recon-
structs y from c. The matrix F with w’s computes Fourier coefficients as fft(y).

Also important. When a function f(x) has period 27, and we change x to 7,
the function is defined around the unit circle (where z = e'%). Then the Discrete
Fourier Transform from y to ¢ is matching » values of this f(z) by a polynomial

p(2y=co+ciz+ -+ L

. [P PR o s e g v T

Find ¢

0,-..,Cp—1 SOthat p(z) = f(z)atnpointsz =1,...,w |

2o

.
\

The Fourier matrix is the Vandermonde matrix for interpolation at those n points.

One Step of the Fast Fourier Transform

We want to multiply F times ¢ as quickly as possible. Normally a matrix times a vector
takes n? separate multiplications—the matrix has n? entries. You might think it is impos-
sible to do better. (If the matrix has zero entries then multiplications can be skipped. But
the Fourier matrix has no zeros!) By using the special pattern w/¥ for its entries, F can be
factored in a way that produces many zeros. This is the FFT.

The key idea is to connect F,, with the half-size Fourier matrix Fyj3. Assume that n
is a power of 2 (say n = 210 = 1024). We will connect Fyg24 to Fs51,—o0r rather to two
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copies of Fs512. When n = 4, the key is in the relation between these matrices:

1 1 1 1 1 1
1 i iz 3 F» 1 2
Fa=11 12 44 ;o and Fy, | = 11
1 i3 (% §° 1 %

On the left is F,4, with no zeros. On the right is a matrix that is half zero. The work is cut
in half. But wait, those matrices are not the same. We need two sparse and simple matrices
to complete the FFT factorization:

1 1 1 1
Factors 1 i1 i? 1
for FFT 47 |1 - 11 1 ‘ )
1 —i 1 i 1

The last matrix is a permutation. It puts the even ¢’s (cp and ¢») ahead of the odd ¢’s (c;
and ¢3). The middle matrix performs half-size transforms F, and F, on the evens and
odds. The matrix at the left combines the two half-size outputs—in a way that produces
the correct full-size output y = Fyc.

The same idea applies when n = 1024 and m = %n = 512. The number w is

e?7i/1024 1t is at the angle # = 27/1024 on the unit circle. The Fourier matrix Fjo4
is full of powers of w. The first stage of the FFT is the great factorization discovered by
Cooley and Tukey (and foreshadowed in 1805 by Gauss):

; |: even-odd ] ( 4)

permutation

[Is;2  Dsiz
Isi2 —Dsya

Iy is the identity matrix. Ds;, is the diagonal matrix with entries (1, w, ..., w>!!). The
two copies of Fs;, are what we expected. Don’t forget that they use the 512th root of unity
(which is nothing but w?!!) The permutation matrix separates the incoming vector ¢ into
its even and odd parts ¢’ = (cg,¢2,...,C1022) and ¢” = (¢1,¢3, ..., C1023)-

Here are the algebra formulas which say the same thing as the factorization of Figz4:

Those formulas come from separating even cy; from odd ¢ .41:

n—1 m—1 m—1
Z ik Z 2jk Z i(2k+1 . 1
yj = u)J Cp = w J Cak - wj( + )C2k+1 with m = Eﬂ. (6)
0 0 0
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The even c¢’s go into ¢’ = (cg, C2,...) and the odd ¢’s go into ¢” = (¢;,¢3,...). Then
g g

come the transforms Fy,¢’ and F,,c”. The key is wﬁ = Wp,. This gives w,zlj ko w,J,;k.
Rewrite yj = Zw,{,kc,g + (wy)’ Zw,{{‘ck” =y; + (wn)jy;’. (7)

For j > m, the minus sign in (5) comes from factoring out (w,)™ = —1.

MATLAB easily separates even ¢’s from odd ¢’s and multiplies by w; . We use conj(F)
or equivalently MATLAB’s inverse transform ifft, because fft is based on @ = W=e=27/",
Problem 17 shows that F and conj(F) are linked by permuting rows.

y = ifft(c(0:2:n—2))*n/2;

FFT step y' =ifft(c(1:2:n~1))xn/2;
fromnton/2 d=wAr0:n/2—1):
in MATLAB e ’

y=+d.«y";y —d.=y"];

The flow graph shows ¢’ and ¢” going through the half-size F,. Those steps are called
“butterflies,” from their shape. Then the outputs y’ and y” are combined (multiplying y”
by 1,i and also by —1, —i) to produce y = F4c.

This reduction from F,, to two F,,’s almost cuts the work in half—you see the zeros in
the matrix factorization. That reduction is good but not great. The full idea of the FFT is
much more powerful. It saves much more than half the time.

00 o Yo 00
¢

10 Cy Y 01

01 ol b2 10
p

11 C3 ¥3 11

The Full FFT by Recursion

If you have read this far, you have probably guessed what comes next. We reduced F, to
Fy /2. Keep going to Fy;4. The matrices Fs;; lead to Fase (in four copies). Then 256 leads
to 128. That is recursion. It is a basic principle of many fast algorithms, and here is the
second stage with four copies of F' = Fas¢ and D = Djs6:

I D F pick 0,4,8,---

F512 {1 =D F pick 2,6,10,--
F512 - I D F pick 1,5,9,"-

I -D F pick 3,7,11,-.-



514 Chapter 10. Complex Vectors and Matrices

We will count the individual multiplications, to see how much is saved. Before the FFT
was invented, the count was the usual #? = (1024)2. This is about a million multiplica-
tions. I am not saying that they take a long time. The cost becomes large when we have
many, many transforms to do—which is typical. Then the saving by the FFT is also large:

The final count for size n = 2 is reduced from n? to 5nt.

The number 1024 is 210, so £ = 10. The original count of (1024)? is reduced to
(5)(1024). The saving is a factor of 200. A million is reduced to five thousand. That is why
the FFT has revolutionized signal processing.

Here is the reasoning behind %né. There are £ levels, going from n = 2¢ down to
n = 1. Each level has n/2 multiplications from the diagonal D’s, to reassemble the half-
size outputs from the lower level. This yields the final count %nl, which is -;-n log, n.

One last note about this remarkable algorithm. There is an amazing rule for the order
that the ¢’s enter the FFT, after all the even-odd permutations. Write the numbers 0 to
n — 1 in binary (base 2). Reverse the order of their digits. The complete picture shows the
bit-reversed order at the start, the £ = log, n steps of the recursion, and the final output
Y0, - - - » Yn—1 Which is F, times c.

The book ends with that very fundamental idea, a matrix multiplying a vector.

Thank you for studying linear algebra. 1 hope you enjoyed it, and I very much hope you
will use it. It was a pleasure to write about this tremendously useful subject.

Problem Set 10.3
1 Multiply the three matrices in equation (3) and compare with F. In which six entries
do you need to know that i2 = —1?

2 Invert the three factors in equation (3) to find a fast factorization of F~1.
3 F' is symmetric. So transpose equation (3) to find a new Fast Fourier Transform!

4 All entries in the factorization of Fg involve powers of wg = sixth root of 1:

we[ 2] A

Write down these matrices with 1, we, wZ in D and w3 = w2 in F3. Multiply!

5 Ifv=(1,0,0,0)and w = (1, 1,1, 1), show that Fv = w and Fw = 4v. Therefore
F7'w=wvand F"lv =

6  Whatis F? and what is F# for the 4 by 4 Fourier matrix?

7 Put the vector ¢ = (1,0, 1, 0) through the three steps of the FFT to find y = Fe¢. Do
the same for ¢ = (0, 1,0, 1).
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Compute y = Fge by the three FFT steps for ¢ = (1,0,1,0, 1,0, 1,0). Repeat the
computation for ¢ = (0,1,0,1,0,1,0, 1).

If w = ¢27/6% then w? and /w are among the and roots of 1.

(a) Draw all the sixth roots of 1 on the unit circle. Prove they add to zero.
(b) What are the three cube roots of 1? Do they also add to zero?

The columns of the Fourier matrix F are the eigenvectors of the cyclic permutation
P. Multiply PF to find the eigenvalues A; to A4:

01 0 0]t 1 1 1 11 1 170[Xx

0 01 off1r & 42 3| |1 i %2 3 Az

0 0 0 L|[1 2 % %) |1 2 i* if A3
1 0 0 01 i i5 i° 1 i3 i i° Aq

Thisis PF = FA or P = FAF™L. The eigenvector matrix (usually S) is F.

The equation det(P — AI) = 0is A* = 1. This shows again that the eigenvalue
matrix A is . Which permutation P has eigenvalues = cube roots of 1?7

(a) Two eigenvectors of C are (1,1,1,1) and (1,,i2,i3). Find the eigenvalues.

co €1 €2 C3 1 1 1 1

c3 ¢ € ¢ 1 | { i
3 0 1 2 =€ and C 2| = €2

Cr €3 Cp Ci 1 1 l 1

€1 €2 €3 (g 1 1 i3 i3

(b) P = FAF~! immediately gives P? = FA?2F~! and P3 = FA3F~!. Then
C =col +c1P +c2P?2+c3P3 = F(col + 1A + c2A?2 +c3A)F™1 =
FEF™!, That matrix E in parentheses is diagonal. It contains the of C.

Find the eigenvalues of the “periodic” —1,2, —1 matrix from E = 21 — A — A3,
with the eigenvalues of P in A. The —1’s in the corners make this matrix periodic:

2 -1 0 -1
-1 2 -1 O

C = 0 -1 2 —1 hascop =2,¢1 = —1,c0 =0,c3 = —1.
-1 0 -1 2

Fast convolution. To multiply C times a vector x, we can multiply F(E(F~!x))
instead. The direct way uses n? separate multiplications. Knowing E and F, the
second way uses only z log, n + » multiplications. How many of those come from
E, how many from F, and how many from F~1?

Why is row i of F the same asrow N —i of F (numbered 0 to N — 1)?
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Solutions to Selected Exercises

Problem Set 1.1, page 8

1 The combinations give (a) a line in R3 (b) aplane in R3 (c) all of R3.
43v+w=(7,5andcv+dw=2c+d,c+2d).
6 The components of every cv + dw add to zero. ¢ = 3 and d = 9 give (3, 3, —6).
9 The fourth corner can be (4, 4) or (4,0} or (-2, 2).
11 Four more comers (1, 1,0), (1,0, 1) 0,1,1), (1 1 1). The center point is (2, % %)
Centers of faces are (2 2,0) (2 5, 1) and , 1 5 5 (1, 4 3 2) and (2, , 2) (

12 A four-dimensional cube has 24 = 16 corners and 2 - 4 = 8 three-dimensional faces
and 24 two-dimensional faces and 32 edges in Worked Example 2.4 A.

13 Sum = zero vector. Sum = —2:00 vector = 8:00 vector. 2:00 is 30° from horizontal
= (cos Z,sin Z) = (v/3/2,1/2).
16 All combinations with ¢ + d = 1 are on the line that passes through v and w.

The point ¥ = —v 4 2w is on that line but it is beyond w.

17 All vectors cv + cw are on the line passing through (0,0) and # = %v + —%w. That

line continues out beyond v + w and back beyond (0, 0). With ¢ > 0, half of this line
is removed, leaving a ray that starts at (0, 0).

20 (a) %u + %v + %w is the center of the triangie between u, v and w; %u + %w lies
betweenuandw . (b) Tofill the triangle keepc>0,d >0,e>0,andc+d +e = 1.

22 The vector %(u + v + w) is outside the pyramid because c +d + ¢ = % + % + % > 1.

25 (a) For a line, choose ¥ = v = w = any nonzero vector (b) For a plane, choose
u and v in different directions. A combination like w = u + v is in the same plane.

Problem Set 1.2, page 19

3 Unit vectors v/||v| = (%, %) = (.6,.8) and w/||w] = (%, %) = (.8, .6). The cosine

of @ is ||'u|| ﬁ%ﬂ = 23, The vectors w, u, —w make 0°, 90°, 180° angles with w.

4 (a) v.(—v) = -1 b)) v+w)-W—w)=vv+WV—VW—WW =
1+( )—( )—1=0s06 = 90° (noticev-w = w-v) © (v—2w)-(v+2w) =
v-v—4w-w=1—4=-3

516
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6 All vectors w = (c, 2¢) are perpendicular to v. All vectors (x, y,z) withx+y+z =0
lie on a plane. All vectors perpendicular to (1, 1, 1) and (1,2, 3) lie on a line.

9 Ifv,wy/vywy = —1then vawy = —vjwy or viw;+vwy = v-w = 0: perpendicular!

11 v - w < 0 means angle > 90°; these w’s fill half of 3-dimensional space.

12 (1, 1) perpendicular to (1,5) —c(1,1)if6—2c =0orc =3; v+ (w —cv) = O if
¢ = v -w/v-v. Subtracting cv is the key to perpendicular vectors.

15 L(x + y) = 2+ 8)/2 = 5; cos § = 2+/16/+/10+/10 = 8/10.

17 cosa = 1/+/2,cos8 B = 0,cosy = —1/+/2. For any vector v, cos? o +cos? +cos? y
= (v} + 93 +v)/ol> = 1.

21 2v-w < 2||v|||w|| leadsto jv+w|]? = vev+2v-wtw-w < |Jv||2+2| vl ||w]+]|w]||>.
This is (J|v]| + ||w||)?. Taking square roots gives ||v + w|| < ||v|| + [w].

22 vZw? + 2vw1vaws + v3wd < viwi+ viw? +vaw? + v3w? is true (cancel 4 terms)
because the difference is v2w2 + v3w? — 2v;w v wy which is (Viwa — v2wy)? > 0.

23 cos 8 = w,/||wl| and sin B = w,/||w||. Then cos(B—a) = cos B cosa+sin B sina =
viwy/||v[lwll + vaws/||v|llw]l = v« w/||v|||w]. This is cos @ because B —a = 6.

24 Example 6 gives |u1||U1| < 3(u? + U?) and ju2||Uz| < 3 (u2 + UZ). The whole line
becomes .96 < (.6)(.8) + (.8)(.6) < 3(.6% +.8%) + 1 (.82 + .6%) = L. True: .96 < 1.

28 Three vectors in the plane could make angles > 90° with each other: (1,0), (—1,4),
(—1, —4). Four vectors could not do this (360° total angle). How many can do this in

R3 or R*?
29 Try v = (1,2,-3) and w = (—3,1,2) with cosf = f} and 8 = 120°. Write

'v-w=xz+yz+xyas%(x+y+z)2—%(x2+y2+22).1fx+y+z=Othis

is —3 (x> + y* + 2%) = =3 |lv||[|w]|. Then v - w/|lv]||lw| = —3.
Problem Set 1.3, page 29

1 251 + 355 + 453 = (2,5, 9). The same vector b comes from S times x = (2, 3,4):

1 0 072 (row 1) - x 2
|:1 1 0] |:3:|=|:(row2)-x]=[5].
1 1 144 (row 2) - x 9

2 The solutions are y; = 1, y» = 0, y3 = 0 (right side =column 1)and y; = 1, y, = 3,
y3 = 5. That second example illustrates that the first 7 odd numbers add to n2.

4 The combination Ow; + Ow, + Qw3 always gives the zero vector, but this problem
looks for other zero combinations (then the vectors are dependent, they lie in a plane):
ws = (w; + w3)/2 so one combination that gives zero is %wl —wy -+ %wg.

5 The rows of the 3 by 3 matrix in Problem 4 must also be dependent: r, = %(rl + r3).
The column and row combinations that produce 0 are the same: this is unusual.

7 All three rows are perpendicular to the solution x (the three equations r; - x = 0 and
ro+x = 0and r3-x = 0 tell us this). Then the whole plane of the rows is perpendicular
to x (the plane is also perpendicular to all multiples cx).
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9 The cyclic difference matrix C has a line of solutions (in 4 dimensions) to Cx = 0:

1 0 0 —17[x 0 c
_(1) _% (1) 8 ;z =g | whenx = i = any constant vector.
0 0 -1 1] Lxa 0 c

11 The forward differences of the squares are (t + 1)2 —t2 =2+ 2t +1—12 =2t + L.
Differences of the nth power are (¢ -+ 1)* — " =" —t" + nt®~! + .... The leading
term is the derivative #¢"~!. The binomial theorem gives all the terms of (¢ + 1)".

12 Centered difference matrices of even size seem to be invertible. Look at eqns. 1 and 4:

0 1 0 O X1 by First X1 —~by — by
-1 0 1 Of|x2]|_|b2 solve x2 | _ | b

0 -1 0 1 X3 - b3 X9 = bl X3 - —-b4

0 0O -1 0 X4 b4 —X3 = b4 X4 b] + b3

13 Odd size: The five centered difference equations lead to b1 + b3 + bs = 0.

X2 =b
X3 — X1 =b2
x4—x2=b3
X5 — X3 =b4

— x4 = bs

14 An example is (a,b) = (3,6) and (¢,d) = (1,2). The ratios a/c and b/d are equal.
Then ad = bc. Then (when you divide by bd) the ratios a/b and ¢/d are equal!

Add equations 1, 3,5

The left side of the sum is zero

The right side is by + b3 + bs

There cannot be a solution unless by + b3 + bs = 0.

Problem Set 2.1, page 40

1 The columns are i = (1,0,0)and j = (0,1,0)and k = (0,0,1) and b = (2,3,4) =
2i +3j + 4k.

2 The planes are the same: 2x = 4isx = 2,3y = 9isy = 3,and 4z = 16isz = 4. The
solution is the same point X = x. The columns are changed; but same combination.
4Ifz =2thenx + y = 0and x — y = z give the point (1,—1,2). If z = 0 then

x + y = 6and x — y = 4 produce (5, 1,0). Halfway between those is (3,0, 1).

6 Equation 1 4+ equation 2 — equation 3 is now 0 = —4. Line misses plane; no solution.

8 Four planes in 4-dimensional space normally meet at a point. The solution to Ax =
(3,3,3,2)is x = (0,0,1,2) if A has columns (1,0,0,0),(1,1,0,0),(1,1,1,0),
(1,1,1,1). Theequationsare x +y +z +t =3, y+z+t=3,z4+t =3,t = 2.

11 Ax equals (14,22) and (0, 0) and (9, 7).

14 2x +3y +2z + 5t = 8is Ax = b withthe 1 by 4 matrix A = [2 3 1 5]. The
solutions x fill a 3D “plane” in 4 dimensions. It could be called a hyperplane.

16 90° rotation from R = [ 0 1

—1 0], 180° rotation from R? = [—1 0] = —].

0 -1
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18

22

23 A

25
28

29
30

31

32

33

34

35

1 00

E = [_i (1)] and £ = [—1 1 0:| subtract the first component from the second.
0 01
X

The dot product Ax = [1 4 5] |:y
z
on a plane in three dimensions. The columns of A are one-dimensional vectors.

=[12; 3 4]Jandx =[5 —2]"andb =[1 7]’. r = b— Axx prints as zero.
ones(4,4) xones(4,1) =[4 4 4 4];Bxw=1{10 10 10 10]".

The row picture shows four lines in the 2D plane. The column picture is in four-
dimensional space. No solution unless the right side is a combination of the two columns.

] = (1 by 3)(3 by 1) is zero for points (x, y, z)

u+, vy, w7 are all close to (.6, .4). Their components still add to 1.

[ g ;’] [2] = l:g:l = steady state s. No change when multiplied by [ g 3]

8 3 4 5+u S5—u+v 5-v
M=|1 5 9|=|5—u—v 5 54+u+v|; Ms(1,1,1) = (15,15, 15);
6 7 2 54v 54+u—v 5-—u

My(1,1,1,1) = (34,34,34,34) because 1 + 2 + --- 4+ 16 = 136 which is 4(34).
A is singular when its third column w is a combination cu + dwv of the first columns.

A typical column picture has & outside the plane of #, v, w. A typical row picture has
the intersection line of two planes parallel to the third plane. Then no solution.

w = (5,7) is 5u + 7v. Then Aw equals 5 times Au plus 7 times Av.
2 -1 0 01[x | X 4
-1 2 =1 Of|x2| _|2 . xa | |7
0 =1 2 —1||xs|=1|3 has the solution Xs | = |8
0 0 -1 2]|[xs 4 X4 6
x=(1,...,1) gives Sx = sum of eachrow = 1+-:-+9 = 45 for Sudoku matrices.

6 row orders (1, 2,3), (1,3,2), (2,1,3), (2,3, 1), (3,1,2), (3,2, 1) are in Section 2.7.
The same 6 permutations of blocks of rows produce Sudoku matrices, so 6* = 1296
orders of the 9 rows all stay Sudoku. (And also 1296 permutations of the 9 columns.)

Problem Set 2.2, pége 51

3

4

6

8

14

Subtract —— (or add 2) times equation 1. The new second equation is 3y = 3. Then
y=1and x 5. If the right side changes sign, so does the solution: (x, y) = (-5, —1).

Subtract £ = £ times equation 1. The new second pivot multiplying y is d — (¢cb/a)
or (ad — bc)/a Then y = (ag — cf)/(ad — bc).

Singular system if b = 4, because 4x + 8y is 2 times 2x + 4y. Then g = 32 makes
the lines become the same: infinitely many solutions like (8, 0) and (0, 4).

If £ = 3 elimination must fail: no solution. If ¥ = —3, elimination gives 0 = 0 in
equation 2: infinitely many solutions. If k¥ = 0 a row exchange is needed: one solution.

Subtract 2 times row 1 from row 2 to reach (d —10)y—z = 2. Equation (3)is y—z = 3.
If d = 10 exchange rows 2 and 3. If 4 = 11 the system becomes singular.
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15 The second pivot position will contain —2 — b. If b = —2 we exchange with row 3. If
b = —1 (singular case) the second equation is —y — z = 0. A solution is (1, 1, —1).

17 Ifrow 1 = row 2, then row 2 is zero after the first step; exchange the zero row with row
3 and there is no third pivot. If column 2 = column 1, then column 2 has no pivot.

19 Row 2 becomes 3y — 4z = 5, then row 3 becomes (g +4)z = ¢t —5. If g = —4
the system is singular — no third pivot. Then if # = 5 the third equation is 0 = 0.
Choosing z = 1 the equation 3y — 4z = 5 gives y = 3 and equation 1 gives x = —9.

20 Singular if row 3 is a combination of rows 1 and 2. From the end view, the three planes
form a triangle. This happens if rows 142 =row 3 on the left side but not the right
side: x+y+z=0,x—2y—z=1,2x—y =4. No parallel planes but still no solution.

25 a = 2 (equal columns), a = 4 (equal rows), a = 0 (zero column).
28 A(2,:) = A(2,:) — 3 % A(1,:) will subtract 3 times row 1 from row 2.

29 Pivots 2 and 3 can be arbitrarily large. I believe their averages are infinite! With row
exchanges in MATLAB’s lu code, the averages are much more stable (and should be
predictable, also for randn with normal instead of uniform probability distribution).

30 If A(5,5) is 7 not 11, then the last pivot will be 0 not 4.

31 Row j of U is a combinationof rows 1, ..., j of A. If Ax = 0 then Ux = 0 (not true
if b replaces 0). U is the diagonal of A when 4 is lower triangular.

Problem Set 2.3, page 63
100 100 10077010 010
11521:[—510],532: 010]P=[001H100]:[001}.
001 07 1 010]001 100
1 0071 001t 0 O 1 0 0
3[—4 1 o][o 1 0], 0 1 o] M = EsyE3 Ey =[—4 1 o].
00 1]Jl20 1]lo -2 1 10 -2 1

5 Changing as3 from 7 to 11 will change the third pivot from 5 to 9. Changing a33 from
7 to 2 will change the pivot from 5 to no pivot.

1 00
9 M= |: 00 1]. After the exchange, we need E3; (not E,1) to act on the new row 3.

110
1 0 1 I 0 1 2 01

10 Ey5=|0 1 0] : [0 1 Oi| i Es1E13= [O 1 O] . Test on the identity matrix!
0 0 1 1 0 1 1 01

9 8 77 rowsand 1 2 3
12 The firstproductis [ 6 5 4| alsocolumns Thesecondproductis{0 1 -2,
3 2 1] reversed. 0 2 -3

14 E,; has —£,1 = %, Es; has —{3, = %, E43 has —{43= %. Otherwise the E’s match /.

1 0 0 1 0 0 1 0 O 1 0 O
18 EF={a 1 O ,FE=|: a 1 Ojl, E2=[2a 1 0],F3=[0 1 0].
b ¢ 1 b+ac c¢ 1 2b 0 1 0 3¢ 1
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22 (a) Y asix; (b) azy—ay;  (€) az1—2ay; (d) (E214x)1 = (Ax); = Y ayx;.
25 The last equation becomes 0 = 3. If the original 6 is 3, then row 1 + row 2 = row 3.
27 (a) No solution if 4 =0 and ¢ #0 (b) Many solutions if d =0=c. No effect from a, b.
28 A= Al = A(BC) = (AB)C = IC = C. That middle equation is crucial.

3 4 1 1 1 1

3°EM=[23 2 3 1 2

] then FEM = |: ] then EFEM = [ ] then EEFEM =

[(1) i] = B. So after inverting with El=Aand FF! = Bthisis M = ABAAB.

Problem Set 2.4, page 75

2 (a) A (column 3 of B) (b) Row 1 of A) B (¢) (Row 3 of A)(column 4 of B)
(d) Row 1 of C)D(column 1 of E).

2 1 2b n _ 1 nb 2 4 4 _ 2" 2”
5@ A _[O 1:landA -[0 L (b)y A° = 0 0 and A" = o o0l

7 (a) True (b) False (c) True (d) False.
9 AF = l:a a+ b] and E(AF) = (EA)F: Matrix multiplication is associative.

c c+d
0 0 1
11 (@) B=41 (b) B=0 (c) B= [0 1 0] (d) Every row of Bis 1,0, 0.
1 00

15 (a) mn (use every entry of A) (b) mnp = pxpart(a) (c) n> (n? dot products).
16 (a) Use only column2 of B (b) Useonlyrow 20of A (c)—(d) Use row 2 of first 4.
18 Diagonal matrix, lower triangular, symmetric, all rows equal. Zero matrix fits all four.

19 (@) an ) &1 =asi/an ©) a2 —(ZHarz (@) a2 — (Fh)ar.

o1 s 1ome 1 =171 17 _TJ0 07
22 A_[_l O]hasA _—I,Bc_[l _1][1 1]_[0 0],

DE = [(1) (1)] [_(1) (1)] = [_(l) (1)] = —ED. You can find more examples.

24 (A1) = [2(;' 2”1— 1]’ (A2)" = on—1 |:} i], (A3)" = [a(;’ analb]‘

27 (a) (row 3 of A)+(column 1 of B) and (row 3 of A)-(column 2 of B) are both zero.

x 0 x x x 0 0 x
(b) [x} [0 x x]=|:0 x x:| and [x} [0 0 x]=[0 0 x:l:bothupper.
0 0 0 O X 0 0 x
og A times B A[H . :H:__.._.]

wivess AL [} [ [—= 1[I}

30 In29, ¢ = [—é]* D = [g ;], D—ch/a = [i ;] in the lower corner of EA.

32 Atimes X = [x; x; x3] will be the identity matrix I = [Ax; Ax, Axs]).
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3 - 3 1 0 O
33 b = 5] gives x = 3x; + 5x, + 8x3 = 81; A=1-1 1 O] will have
| 8 | 16 0 -1 1

those x; = (1,1,1),x5 = (0,1, 1), x3 = (0,0, 1) as columns of its “inverse” A~L.

[0 1 0 1 2 0 2 07 abaada cba,cda These show
35 4 — 1 010 42 = 0 2 0 2| bab,bcb dab,dcb 16 2-step
o1 0 1} {2 0 2 0] abe,adec cbe,cde  pathsin
1. 01 0 0 2 0 2| bad,bed dad,ded the graph
Problem Set 2.5, page 89

1._| 4( l_l 2 i 1 _ |

7 (a) In Ax = (1,0,0), equation 1 + equation 2 — equation 3is 0 = 1 (b) Right
sides must satisfy by +b, = b3 (c) Row 3 becomes a row of zeros—no third pivot.

8 (a) The vector x = (1,1, —~1) solves Ax = 0 (b) After elimination, columns 1
and 2 end in zeros. Then so does column 3 = column 1 + 2: no third pivot.

12 Multiply C = AB on the left by A~! and on the right by C™1. Then A~! = BC~!.
-1
14 B~l = 47! B (1)] = A1 [_} (1)] subtract column 2 of A~! from column 1.

16 | ¢ bl d =b| _ |ad-bc 0 The inverse of each matrix is
¢c d|]l-c a|” 0 ad —bc |' the other divided by ad — bc

18 A2B = I can also be written as A(AB) = I. Therefore A~! is AB.
21 Six of the sixteen 0 — 1 matrices are invertible, including all four with three 1’s.

(1 3 1 0 1 3 1 0 1 0 7 =3]_ 11
2127 0 1]"[0 1 -2 1]"[0 [ -2 1]—[1 A7
(1 4 1 0 1 4 10 1 0 -3 4/37_ -1
3 9 0 1]“’[0 -3 -3 1]*[0 11 —1/3]‘[1 A7
1l a b 1 0 07 1l a 01 0 =b 1 0 01 —a ac—»b
24010010——>|:01001—c—>01001 —c].
001 00 1] [060100 1 0010 0 1
1 0 0 2 -1 0
27 A7l = [—2 1 —3 | (notice the pattern); A~ = |1 2 —1].
0 0 1] 0 -1 1
1 a O_b
31 Elimination produces the pivotsa anda—b anda—b. A™! = —a a 0],
a@=>b)| 0-q aq

x=(,1,...,)has Px =Qxso(P—-Q)x =0.

I 0 A1 0 -D I
34 [—C 1:|and[—D“1CA"‘1 D_l]and[ I O]'

35 A can be invertible with diagonal zeros. B is singular because each row adds to zero.
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38 The three Pascal matrices have P = LU = LLT and then inv(P) = inv(LT)inv(L).
42 MM~ = ,-UV) (I,+U(I,—VU) V) (this is testing formula 3)
=,-UV+UIp—-VU)"'W-UVU(,,—VU)"'V (keep simplifying)
=1,-UV+UUn=VU)Un—=VU) 1V =1, (formulas 1,2, 4 are similar)
43 4 by 4 still with 71, = 1 has pivots 1, 1, 1, 1; reversing to T* = UL makes T, = 1.
44 Add the equations Cx = b to find 0 = by + b, + b3 + bs. Same for Fx = b.

Problem Set 2.6, page 102

3 437 = 1 and 3, = 2 (and £33 = 1): reverse steps to get Au = b from Ux = ¢:
1 times (x+y+z = 5)+2 times (y 42z = 2)+1 times (z = 2) gives x+3y+6z = 11.

o LT R

1 1 1 1 17 1 0 O
6 [0 1 :l[—Z 1 :|A= 0 2 3| =U. Then A = |:2 1 OJUiS
0-2 1 0 01 |0 0 —6] 0 2 1
the same as E;! E3;'U = LU. The multipliers £5;, £3, = 2 fall into place in L.

10 ¢ = 2 leads to zero in the second pivot position: exchange rows and not singular.
¢ = 1 leads to zero in the third pivot position. In this case the matrix is singular.

T2 41 1 olT2 41Tt o1[2 o1t 2], mrroyree st
12A—[4 11]“[2 1”0 3]"[2 1][0 3”0 1]—LDU’U‘SL

1 1 4 O 1 I 1 4 0O
4 1 :][0 —4 4j| =14 1 :H: —4 :H:O 1 —1:|=LDLT.
10 -1 1]J[0 O 4 0 -1 1 4110 0 1
[a r r 1 1 a r r r a#0
a b s s|_|[1 1 b—r s—r s-—r b#r
14 a b ¢ t| {1 1 1 c—s t—s¢§ - Need cH#s
la b ¢ d 1 1 1 1 d—t d #t
15 i ?]c=[1%]give5c=[§].Then|:g ﬂx=[§]givesx=|:—§:|.

g8 17|*< 1 3

18 (a) Multiply LDU = L; D, U, by inverses to get Ll‘lLD = DU, UL, The left
side is lower triangular, the right side is upper triangular => both sides are diagonal.
(b) L,U, L{,U, have diagonal 1’s so D = D;. Then Ll‘]L and U; U~! are both 1.

20 A tridiagonal T has 2 nonzeros in the pivot row and only one nonzero below the pivot
(one operation to find £ and then one for the new pivot!). T = bidiagonal L times
bidiagonal U.

23 The 2 by 2 upper submatrix A, has the first two pivots 5, 9. Reason: Elimination on A
starts in the upper left corner with elimination on A,.

24 The upper left blocks all factor at the same time as A: Ay is Ly Ug.
25 Thei, j entry of L™ is j/i fori > j. And L;;—; is (1 —i)/i below the diagonal
26 (K1) = j(n—i+1)/(n+1)fori > j (and symmetric): (n + 1)K~! looks good.

Ax =b is LUx = I:Z' 4] = [1%] Forward to [(2) 4:|x = [2] = C.
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Problem Set 2.7, page 115

2

4

10

14
18

20

22

24

26

31

32
33
36

37

(AB)T is not ATBT except when AB = BA. Transpose that to find: BTAT = ATBT.

A= [8 (1)] has 42 = 0. The diagonal of AT 4 has dot products of columns of A with

themselves. If ATA = 0, zero dot products = zero columns = A4 = zero matrix.

BT DT
The 1 in row 1 has n choices; then the 1 in row 2 has n — 1 choices ... (n! overall).

AT CT
MT=[ ]MT M needs AT = Aand BT = C and DT = D.

(3,1,2,4) and (2, 3, 1, 4) keep 4 in place; 6 more even P’s keep 1 or 2 or 3 in place;
(2,1,4,3) and (3, 4, 1, 2) exchange 2 pairs. (1,2,3,4), (4,3,2,1) make 12 even P’s.
Thei, j entry of PAP isthen—i+1,n—j + 1 entry of A. Diagonal will reverse order.

(@) 5+4+3+2+1 = 15independent entries if A = AT (b) L has 10 and D has 5;
total 15in LDLT (c) Zero diagonal if AT = —A, leaving 4 +3 + 2+ 1 = 10 choices.

(1 3] _[t o[t o}ft 3] [1 ] _[1 o]f1 O 1 b
3 2|7 [3 1]{0 =7j[0 1] |b c| |b 1|0 c=b2][0 1
- - 1 2 _1
2 -1 0 h 5 1 —5 0 i
-1 2 -1|=|—5 1 5 1 -2 |=LDL".
L0 -1 2, 0o -2 4 3
3 3

LI
[
(S s R

-1 -1 111t 1 1 1 2 0

1 ] _|o [ ” 1}4:[1 ][ i 1]

1 2 | 1 2 1 1
1770 1 2 2 1

PA=LUis|: 1 ] 0 3 8:| [0 1 M 8].Ifwewait
1 2 1 1 0 1/3 1 ~2/3

1 1 2 1 1
to exchange and a, is the pivot, A = L, PyU; = [3 1 :I [ 1} [O 1 2].
1111 0 0 2

One way to decide even vs. odd is to count all pairs that P has in the wrong order. Then
P is even or odd when that count is even or odd. Hard step: Show that an exchange
always switches that count! Then 3 or 5 exchanges will leave that count odd.

[410 1880] [xl] = Ax: ATy = [ 1 40 2][7(3’0] _ [ 6820 ] 1 truck
5 50 X2 50 1000 50 3000 188000 | 1 plane
Ax - y is the cost of inputs while x + ATy is the value of outputs.

P3 = [ so three rotations for 360°; P rotates around (1, 1, 1) by 120°.

These are groups: Lower triangular with d1agonal 1’s, diagonal invertible D, permuta-
tions P, orthogonal matrices with 0T = Q1.

Certainly BT is northwest. B2 is a full matrix! B! is southeast: - [4_1]
The rows of B are in reverse order from a lower triangular L, so B PL. Then

B~! = L~1P~! has the columns in reverse order from L~!. So B! is southeast.
Northwest B = PL times southeast PU is (PLP)U = upper triangular.

Q)—t
L.—-J



Solutions to Selected Exercises 525

38 There are n! permutation matrices of order n. Eventually two powers of P must be
the same: If P* = P® then P" 5 = I. Certainly r — s < n!

p 0 1 010
P=|"72 is 5 by 5 with P, = and P3=|0 0 1|and PS=1.
P; 1 0 1 00

Problem Set 3.1, page 127

1x+yF#y+xandx+(y+2z)# (x+y)+zand (c1 +c2)x # c1x + cax.

3 (a) ¢x may not be in our set: not closed under multiplication. Also no 0 and no —x
(b) ¢(x + y) is the usual (xy)¢, while cx + cy is the usual (x¢)(y¢). Those are equal.
Withc =3,x =2, y = 1 thisis 3(2 4- 1) = 8. The zero vector is the number 1.

5 (a) One possibility: The matrices c4 form a subspace not containing B (b) Yes: the
subspace must contain A — B = I  (c) Matrices whose main diagonal is all zero.

9 (a) The vectors with integer components allow addition, but not multiplication by %
(b) Remove the x axis from the xy plane (but leave the origin). Multiplication by any
¢ is allowed but not all vector additions.

a b
0 0

15 (a) Two planes through (0, 0, 0) probably intersect in a line through (0, 0, 0)
(b) The plane and line probably intersect in the point (0, 0, 0)
(¢c) If x and y are inboth § and T, x + y and cx are in both subspaces.

20 (a) Solution only if by = 2b; and b3 = —by (b) Solution only if b3 = —b;.

23 The extra column b enlarges the column space unless b is already in the column space.

[4 B]= 1 0 1 [ (larger column space) 1 0 1] (bisincolumn space)
T |0 0 1| (Mmosolutionto Ax =5)|0 1 1| (Ax = b has a solution)

25 The solutionto Az =b +b*isz=x + y. If b and b* are in C(4) sois b + b*.

30 () fuandv arebothin S + T, thenu =s; +t1andv = 52 + 2. Sou +v =
(514 82)+ (1, +ty)isalsoin § + T. And so is cu = cs; + cty: a subspace.

(b) If S and T are different lines, then S U T is just the two lines (not a subspace) but
S + T is the whole plane that they span.

31 IfS =C(A)and T = C(B)then § + T is the column spaceof M =[A B].

32 The columns of AB are combinations of the columns of 4. So all columnsof [A AB]

are already in C (A). But A = [g (1)] has a larger column space than 42 = [8 g]

a

11 () All matricesl: ] (b) All matrices [ 0 g] (c) All diagonal matrices.

For square matrices, the column space is R” when A is invertible.

Problem Set 3.2, page 140

2 (a) Free variables x», x4, x5 and solutions (-2, 1,0, 0, 0), (0,0,-2,1,0), (0,0,-3,0, 1)
(b) Free variable x3: solution (1, —1, 1). Special solution for each free variable.
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1 2 0 0 O 1 0 -1
4 R=|0 0 1 2 3:|, R = I:O 1 1:|, R has the same nullspace as U and A.
[0 00 0 O 0 0 O

6 (a) Special solutions (3,1,0) and (5,0,1) (b) (3,1,0). Total of pivot and free is #.
(1 -3 -5 _. , 1 -3 0] ..., [10
8R=_0 0 0]w1thl=[1],R=[0 0 1]w1thl—[0 1].

10 (a) Impossiblerow 1 (b) A = invertible (¢) A =allones (d) A =2/, R=1.
14 If column 1 = column 5 then x5 is a free variable. Its special solution is (—1,0, 0,0, 1).

16 The nullspace contains only x = 0 when A has 5 pivots. Also the column space is R>,
because we can solve Ax = b and every b is in the column space.

20 Column 5 is sure to have no pivot since it is a combination of earlier columns. With
4 pivots in the other columns, the special solution is s = (1,0, 1,0, 1). The nullspace
contains all multiples of this vector s (a line in R>).

24 This construction is impossible: 2 pivot columns and 2 free variables, only 3 columns.

26 A= [8 (1)] has N (A4) = C (A) and also (a)(b)(c) are all false. Notice rref(47) = [(1) 8}
30

32 Any zero rows come after theserows: R=[1 -2 -3], R = [(1) (1) 8]’ R=1.

33 (a) [(1) (1)][(1) g], |:(1) (l):l, [8 (l):l, [8 8] (b) All 8 matrices are R’s !

35 The nullspace of B = [A A] contains all vectors x = [_i ] for y in R*.

36 If Cx =0then Ax =0 and Bx = 0. So N(C) = N(A) N N(B) = intersection.

37 Currents: y1—y3+ya=—y1+y2++ys =—yo+ya+y6 =—Ya—ys— Y6 = 0.
These equations add to 0 = 0. Free variables ys, ys, y¢: watch for flows around loops.

Problem Set 3.3, page 151

1 (a) and (c) are correct; (d) is false because R might have 1’s in nonpivot columns.

3R—(I)g(1) Rr=[R« R R Ra O Zero rows go
4 0 0 0 5=[Ra Ra] Re— |’ R4 | tothe bottom

5 Ithink R; = A;, R, = Aj is true. But Ry — R, may have —1’s in some pivots.

7 Special solutionsin N =[—-2 -4 1 0; -3 -5 0 1]and [1 O 0;0 =2 1].
13 P has rank r (the same as A) because elimination produces the same pivot columns.
14 The rank of R7 is also 7. The example matrix A has rank 2 with invertible S:

I3
_ r_ 12 2 r_[1 2 N
P—B g} F —[3 6 7] S—[3 7] S—[z

16 (uv")(wz") = u(vTw)z" has rank one unless the inner product is vTw = 0.

~ W
——
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18 If we know that rank(BTAT) < rank(AT), then since rank stays the same for transposes,
(apologies that this fact is not yet proved), we have rank(4B) < rank(A4).

20 Certainly A and B have at most rank 2. Then their product 4B has at most rank 2.
Since BA is 3 by 3, itcannot be I evenif AB = I.

21 (a) A and B will both have the same nullspace and row space as the R they share.
(b) A equals an invertible matrix times B, when they share the same R. A key fact!

I 0 1 1 0] 1 1 0
22 A = (pivot columns)(nonzerorowsof R) = [ 1 4 =111 0|+
1 )0 01 110

o0 9l g_l2 21 0]_ commns _[2 0], [0 2
. — 12 3]|0 1|~ timesrows ~ |2 O 0 3
0 0 8, i
26 The m by n matrix Z has r ones to start its main diagonal. Otherwise Z is all zeros.

1 F|_ rbyr rbyn—r 1 0
00| |m—rbyr m—rbyn—r 100

27 R =[ ]; rref(RT) = ]; rref(RTR) =same R

28 The row-column reduced echelon form is always [(I) 8 ;[ isrbyr.

Problem Set 3.4, page 163

2 1 3 b 2 1 3 by 1 1/2 3/2 5§
2[6 39 b2:|——>|:0 0 0 b2—3b1] Then [ R d]=[0 0 0 0]
4 2 6 bs 0 0 0 bs—2b Oo0 0 0
Ax = b has a solution when b, — 3b; = 0 and b3 — 2b; = 0; C(A) = line through
(2,6,4) which is the intersection of the planes b, — 3b; = 0 and b3 — 2b; = 0;
the nullspace contains all combinations of 57 = (—1/2,1,0) and 55 = (=3/2,0,1);
particular solution x , = d = (5,0, 0) and complete solution x , + ¢157 + ¢282.
1

1
4 xcomplete =Xpt+Xp= (5’ 0.3 0) + x2(=3,1,0,0) + x4(0,0, -2, 1).
5b; —2b;

6 (a) Solvableif b, = 2b; and 3by —3b3 + by = 0. Then x = [ bs —2b; | = Xp

0 1

8 (a) Every b is in C (A): independent rows, only the zero combination gives 0.
(b) Need b3 = 2b,, because (row 3) — 2(row 2) = 0.

12 (a) x; — x5 and 0 solve Ax =0 (b) ARx; —2x2)=0,A2x; —x2)=2b
13 (a) The particular solution x;, is always multiplied by 1 (b) Any solution can be x,
(©) [g ?,] [i] = [2] Then [i] is shorter (length +/2) than [S:l (Iength 2)

(d) The only “homogeneous” solution in the nullspace is x,, = 0 when A is invertible.

5b1 —2bs —1
(b) Solvable isz = 2b1 and 3b1 - 3b3 + b4 =0.x = |: b3 - 2[91 ] + X3 |i—1j|

14 If column 5 has no pivot, x5 is a free variable. The zero vector is not the only solution
to Ax = 0. If this system Ax = b has a solution, it has infinitely many solutions.
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16 The largest rank is 3. Then there is a pivot in every row. The solution always exists.
The column space is R>. Anexampleis A = [/ F ] for any 3 by 2 matrix F.

18 Rank = 2; rank = 3 unless ¢ = 2 (then rank = 2). Transpose has the same rank!
25 (a) r <m,alwaysr <n (b)) r=m,r<n (c)r<mr=n (d)r=m=n.

g [1230]_ [1200] [ fr23s]_[120-
0040 0010 = I']0048 001 2

Free x; = 0 gives x , = (—1, 0, 2) because the pivot columns contain /.

1023 2 102 32 1020 —4 ‘;‘ “g
30[1320 5j|—>|i030—3 3:|—>I:0100 3:|; o lsx¥n=x3| |
2049 10 000 3 6 0001 2/[3 :

36 If Ax = b and Cx = b have the same solutions, A and C have the same shape and
the same nullspace (take # = 0). If » = column 1 of 4, x = (1,0,...,0) solves
Ax =b soitsolves Cx =b. Then A and C share column 1. Other columns too: 4 =C!

Problem Set 3.5, page 178

2 v, v,,v3 are independent (the —1°s are in different positions). All six vectors are on
the plane (1,1, 1, 1) - v = 0 so no four of these six vectors can be independent.

3 If g = O then column 1 = 0; if d = 0 then b(column 1) — a(column 2) = 0;if f =0
then all columns end in zero (they are all in the xy plane, they must be dependent).

6 Columns 1, 2, 4 are independent. Also 1, 3, 4 and 2, 3, 4 and others (but not 1, 2, 3).
Same column numbers (not same columns!) for A.

8 If c1 (w2 +w3) +c2(wy +w3) +c3(wy +wy) = 0then (c2 +c3)wy + (1 +c3)wa +
(c1 + c2)ws = 0. Since the w’s are independent, c; +¢3 =c¢; +¢3 =c¢1 + ¢, =0.
The only solution is ¢; = ¢ = ¢3 = 0. Only this combination of v, v,, v3 gives 0.

11 (a) Line in R3 (b) Plane in R? (c) Allof R? (d) All of R3.

12 b is in the column space when Ax = b has a solution; ¢ is in the row space when
ATy = ¢ has a solution. False. The zero vector is always in the row space.

15 The n independent vectors span a space of dimension #. They are a basis for that space.
If they are the columns of A then m is not less thann (m > n).

18 (a) The 6 vectors might not span R* (b) The 6 vectors are not independent
(c) Any four might be a basis.

20 One basis is (2,1,0), (—3,0,1). A basis for the intersection with the xy plane is
(2,1,0). The normal vector (1, —2, 3) is a basis for the line perpendicular to the plane.

22 (a) True (b) False because the basis vectors for RS might not be in S.
25 Rank 2ifc = 0and d = 2; rank 2 except whenc =d orc = —d.

sg| 1 0O0]f0 1 0o o 1] [1-1 o], [1 0-l
-1 0 0pPlo -1 ollo o —-1Pj=1 1 o] o 1}

32 y(0) = Orequires A + B 4+ C = 0. One basis is cos x — cos 2x and cos x — cos 3x.
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34 y;(x), y2(x), y3(x) can be x, 2x, 3x (dim 1) or x, 2x, x? (dim2) or x, x2, x3 (dim 3).
37 The subspace of matrices that have AS = SA has dimension three.

39 If the 5 by 5 matrix [4 b] is invertible, & is not a combination of the columns of A.
If [A b] is singular, and the 4 columns of A are independent, b is a combination of
those columns. In this case Ax = b has a solution.

The six P’s
1 I = l:l I:I—l:l 1:I+[1 1 :I-I—l: | I:I_[l { :| are dependent -

42 The dimension of S is (a) zero when x = 0 (b) one when x = (1,1,1,1)
(c) three when x = (1, 1, —1, —1) because all rearrangements have x1 +--- + x4 = 0
(d) four when the x’s are not equal and don’t add to zero. No x gives dimS = 2.

43 The problem is to show that the #’s, v’s, w’s together are independent. We know the
u’s and v’s together are a basis for V, and the #’s and w’s together are a basis for W.
Suppose a combination of #’s, v’s, w’s gives (. To be proved: All coefficients = zero.

Key idea: The part x from the #’s and v’s is in V, so the part from the w’s is —x. This
partis now in ¥V and also in W. But if —x isin ¥V N W it is a combination of u’s only.
Now x —x = O uses only #’s and v’s (independent in V'!) so all coefficients of u’s and
v’s must be zero. Then x = 0 and the coefficients of the w’s are also zero.

44 The inputs to an m by n matrix fill R”. The outputs (column space!) have dimension
r. The nullspace has n — r special solutions. The formula becomes r + (n — r) = n.

Problem Set 3.6, page 190

1 (a) Row and column space dimensions = 5, nullspace dimension = 4, dim(N (4T))
=2 sum=16=m+n (b) Column space is R3; left nullspace contains only 0.

1 0
4 (a) I:I O:| (b) Impossible: r+(n—r)mustbe3 (¢c) {1 1] () [_g —i’]
0 1
(e) Impossible Row space = column space requires m = n. Thenm —r = n —r;
nullspaces have the same dimension. Section 4.1 will prove N(A) and N(47)
orthogonal to the row and column spaces respectively—here those are the same space.

6 A: dim 2,2,2,1: Rows (0,3,3,3) and (0, 1,0,1); columns (3,0, 1) and (3,0,0):
nullspace (1,0,0,0) and (0,—1,0,1); N(47)(0,1,0). B: dim 1,1,0,2 Row space
(1), column space (1, 4, 5), nullspace: empty basis, N (A7) (—4, 1,0) and (=5,0, 1).

9 (a) Same row space and nullspace. So rank (dimension of row space) is the same
(b) Same column space and left nullspace. Same rank (dimension of column space).

11 (a) No solution means that r < m. Always r < n. Can’t compare m and n
(b) Since m — r > 0, the left nullspace must contain a nonzero vector.

1 0 1 0 1
not match 2 + 2 = 4. Only v = 0 is in both N (4) and C (A7).

16 f Av =0andvisarowof Athenv-v =0.

I 1 1 0 1 2 2 1
12 A neat choiceis |0 2 [1 2 0]: 2 4 0; r+(mn—r)=n=3does
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18 Row 3—2 row 24 row 1 = zero row so the vectors c¢(1, —2, 1) are in the left nullspace.
The same vectors happen to be in the nullspace (an accident for this matrix).

20 (a) Special solutions (—1,2,0,0) and -—%, 0,—3, 1) are perpendicular to the rows of
R (and then ER). (b) ATy = 0 has 1 independent solution = last row of E~!.
(E~!A = R has a zero row, which is just the transpose of ATy = 0).

21 (a) uand w (b) vandz (c) rank < 2 if u and w are dependent or if v and z
are dependent (d) The rank of uv™ + wzT is 2.

24 ATy = d puts d in the row space of A; unique solution if the left nullspace (nullspace
of AT) contains only y = 0.

26 The rows of C = AB are combinations of the rows of B. So rank C < rank B. Also
rank C < rank A, because the columns of C are combinations of the columns of A.

29 a;1 = 1l,a12 =0,a13 = 1,425 =0,a3; = l,a31 = 0,a23 = 1,a33 =0,a3; = 1.

30 The subspaces for A = uw?T are pairs of orthogonal lines (v and v*, u and ul).

If B has those same four subspaces then B = cA4 with ¢ # 0.

31 (a) AX = O if each column of X is a muitiple of (1, 1, 1); dim(nullspace) = 3.
(b) If AX = B then all columns of B add to zero; dimension of the B’s = 6.
(©) 3+ 6 = dim(M3*3) = 9 entries in a 3 by 3 matrix.

32 The key is equal row spaces. First row of 4 = combination of the rows of B: only
possible combination (notice I) is 1 (row 1 of B). Same for each row so F = G.

Problem Set 4.1, page 202

1 Both nullspace vectors are orthogonal to the row space vector in R3. The column space
is perpendicular to the nullspace of AT (two lines in R? because rank = 1).

1 2 =3 2 1 1 1
3 (a) [ 2 =3 1:| (b) Impossible, [—3] not orthogonal to [1:] () [1} and [0] in
-3 5 =2 5 1 1 0

C(A) and N (4T) is impossible: not perpendicular (d) Need A2 = 0; take A = [1 ~1]
(e) (1,1, 1) in the nullspace (columns add to 0) and also row space; no such matrix.

6 Multiply the equati0n§ by y1, y2,¥3 = 1,1, —1. Equations add to 0 = 1 s0 no solution:
y = (1,1,—1) is in the left nullspace. Ax = b wouldneed 0 = (yTA)x = yTh = 1.

8 x = x, + x,, where x, is in the row space and x, is in the nullspace. Then Ax, = 0
and Ax = Ax, + Ax, = Ax,. All Ax are in C (4).

9 Ax is always in the column space of A. If ATAx = 0 then Ax is also in the nullspace
of AT. So Ax is perpendicular to itself. Conclusion: Ax = 0if ATAx = 0.

10 (a) With AT = A, the column and row spaces are the same (b) x isinthe nullspace
and z is in the column space = row space: so these “eigenvectors” have xTz = 0.

12 x splitsinto x, + x, = (1,—1) + (1,1) = (2,0). Notice N (A7) is a plane (1,0) =
1,0)/24+A,-1)/2=x, +x,.

13 VTW = zero makes each basis vector for V orthogonal to each basis vector for W.
Then every v in V is orthogonal to every w in W (combinations of the basis vectors).
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14 Ax = BX means that [4 B] [_;:\ = (). Three homogeneous equations in four

unknowns always have a nonzero solution. Here x = (3,1) and ¥ = (1,0) and
Ax = BX = (5,6,5) is in both column spaces. Two planes in R®> must share a line.
16 ATy = 0leadsto (Ax)"y = xTATy = 0. Then y L Ax and N(AT) L C(A).

18 S+ is the nullspace of 4 = [; g ;] Therefore S is a subspace even if S is not.

21 Forexample (—5,0,1, 1) and (0,1, —1,0) span st =nullspace of A = [% g § 3]

23 x in V1 is perpendicular to any vector in V. Since V contains all the vectors in S,
x is also perpendicular to any vector in S. So every x in V<iisalsoin St

28 (a) (1,—1,0) is in both planes. Normal vectors are perpendicular, but planes still in-
tersect! (b) Need three orthogonal vectors to span the whole orthogonal complement.
(c) Lines can meet at the zero vector without being orthogonal.

30 When AB = 0, the column space of B is contained in the nullspace of A. Therefore
the dimension of C (B) < dimension of N (A). This means rank(B) < 4 — rank(A4).

31 null(N’) produces a basis for the row space of A (perpendicular to N(A)).
32 Weneed r'n = 0 and ¢™¢ = 0. All possible examples have the form acr™ witha # 0.

33 Both r’s orthogonal to both r’s, both ¢’s orthogonal to both £’s, each pair independent.
All A’s with these subspaces have the form [c; ¢2]M [r; r2]" for a2 by 2 invertible M.

Problem Set 4.2, page 214

1 (a) aTb/aa=5/3; p=5a/3;e=(-2,1,1)/3(b) a'b/a’a=—1; p=a; e =0.
1 1

5 1 1 3 1 1
5 .P2=—- 39 3 andP2b= 3 1.
u “[1 3 1] [1]
2 2

6 p1=(5.—5.—%) and py=(§.5.—3) and p3 = (3,~5.5)- So py + p» + p3 = b.
9 Since A is invertible, P = A(ATA) 1AT=AA"1(AT) "1 AT =I: project on all of R?,
11 (a) p=A(ATA)'ATh=(2,3,0),e=(0,0,4), ATe=0 (b) p=(4,4,6),e=0.
15 2A has the same column space as A. X for 24 is half of X for A.
16 %(1,2,—1) + %(1,0, 1) = (2,1, 1). So b is in the plane. Projection shows Pb = b.

18 (a) I — P is the projection matrix onto (1, —1) in the perpendicular direction to (1, 1)
(b) I — P projects onto the plane x + y + z = 0 perpendicular to (1, 1, 1).

1 1/6 —1/6 —1/3 5/6 1/6 1/3
20 e:|:—1:|, Q=5TL;‘=[—1/6 1/6 1/3], I——Q={:1/6 5/6 —1/3].
—2 ~1/3  1/3 2/3 1/3 —1/3 1/3

21 (A(ATA)‘IAT)2 = A(ATA)"Y(ATAY(ATA)"1AT = A(ATA)"1AT. So P2 = P.
P b is in the column space (where P projects). Then its projection P(Pb) is Pb.

W]

1 1 1 1
3 P==|1 1 1}and Pib =
3 1
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24 The nullspace of AT is orthogonal to the column space C (A). So if ATh = 0, the pro-
jection of b onto C (A) shouldbe p = 0. Check Pb = A(ATA)"1ATh = A(ATA)™10.

28 P2 = P = PT give PTP = P. Then the (2,2) entry of P equals the (2, 2) entry of
PT P which is the length squared of column 2.

29 A = BT has independent columns, so ATA (which is BBT) must be invertible.

: : 3 aa®” 179 12
30 (a) The column space is the line through a = |: 4] so Pc = T2 = 25 [12 25].
(b) The row space is the line through v = (1,2,2) and Pp = vovT/vTv. Always
Pc A = A (columns of A project to themselves) and APgr = A. Then PcAPr = A

31 The error ¢ = b — p must be perpendicular to all the a’s.

32 Since P;b is in C(A), P,(P1b) equals P1b. So P,P; = P, = aa"/a"a where
a=(1,2,0).

33 If P; P, = P, P; then S is containedin T or T is contained in S'.

34 BBT is invertible as in Problem 29. Then (ATA)(BBT) = product of r by r invertible
matrices, so rank r. AB can’t have rank < r, since AT and BT cannot increase the rank.
Conclusion: A (m by r of rank r) times B (r by n of rank r) produces AB of rank r.

Problem Set 4.3, page 226

1 0 07 )
11 1 8 . T, _ |4 8 T _ | 36
14= 1 3 and b = ] give A A_[S 26 andAb—[llz].
1 4 20 )

17 —1
- .~ J1 - 5 3
ATA.x-:ATbglvesxzI:4 andp=AX=| [;|ande=b—p=]|_5
i 17| E=|e|>?=44 | 3
5 E=(C—-02+(C—8)24+(C—-8)24+(C—-202.4T=[1 1 1 1]and AT4 = [4].
ATh =[36] and (ATA) 1 ATh = 9 = best height C. Errors e = (-9,—1,—1, 11).
7A=[01 3 4]", ATA=[26]and ATh = [112]. Best D = 112/26 = 56/13.

8 £=56/13, p=(56/13)(0,1,3,4). (C, D) = (9, 56/13) don’t match (C, D) =(1,4).
Columns of A were not perpendicular so we can’t project separately to find C and D.

Parabola } ‘1) (1’ C g 4 8 2671C 36
9 Projecth |, 9 [D =| g .ATAfr‘=|: 8 26 92] [D] = |:112j|.
w3p |12 2ILE] |0 2% 92 338|lE| 400

11 (a) The best line x = 1 + 4¢ gives the center point b = 9when? = 2.
(b) The first equation Cm + D ) t; = Y_ b; divided by m gives C + Dt =b.

13 (ATA)"1AT(h — Ax) =% —x. Whene = b — Ax averagesto 0, so does X — x.

14 The matrix (¥ — x)(¥ — x)Tis (ATA)"1AT(B — Ax)(b — Ax)TA(ATA)~!. When the
average of (b — Ax)(b — Ax)T is 021, the average of (X — x)(X — x)T will be the
output covariance matrix (ATA)~1 ATo2 A(ATA)~! which simplifies to 02(ATA4)~1.
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16 —blo + 19—0x9 —6(b1 + -+ + b10). Knowing X avoids adding all b’s.

18 p = AXx = (5,13,17) gives the heights of the closest line. The erroris & — p =
(2,—6,4). Thiserror e has Pe = Pb—Pp=p—p = 0.

21 e isin N(4T); pisin C(4); X isin C(AT); N(A) = {0} = zero vector only.

23 The square of the distance between points on two lines is E (y—x)2+Q@y—x)*+
(1 + x)2. Derivatives 1E)E/ax =3x—4y+1=0and 5 BE/ay = —4x + 10y = 0.

The solutionis x = —5/7,y = —2/7; E = 2/7, and the minimum distance is \/_ .
25 3 points on a line: Equal slopes (by—b1)/(t2—t1) = (bs—b3)/(t3—1>). Linear algebra:
Orthogonalto (1, 1, 1) and (¢1, 12, t3) is y = (t2—13,13—11, {1 —13) in the left nullspace.
b is in the column space. Then yTh = 0 is the same equal slopes condition written as
(b2 = b1)(t3 — 12) = (b3 — b2) (2 — 11).
27 The shortest link connecting two lines in space is perpendicular to those lines.

28 Only 1 plane contains 0, a1, a; unless a;, a, are dependent. Same test fora;, ..., a;,.

Problem Set 4.4, page 239

3 (a) ATA will be 167 (b) ATA will be diagonal with entries 1, 4, 9.
6 Q10 is orthogonal because (Q102)70102 = 07070102 = 070, =1.
8 If ¢, and g, are orthonormal vectors in R° then (q1b)q, + (q;_fb)q2 is closest to b.

11 (a) Two orthonormal vectors are q, = Tb—(l,3,4,5,7) and ¢, = E(_7’3’4’_5" 1)
(b) Closest in the plane: project 0 0*(1,0,0,0,0) = (0.5,—0.18,—0.24,0.4, 0).

13 The multiple to subtract is T a b .Then B = b — i;-lla =(4,00—-2-(1,1) = (2,-2).

o[} 2]t il B[ ]G 2o

15 @) ¢, = 3(1,2,-2), ¢, = $(2,1,2), g3 = 3(2,-2,-1) (b) The nullspace
of AT contains ¢, ©) x = (ATA™147(1,2,7) = (1,2).

16 The projection p = (a'h/a"a)a = 14a/49 = 2a/7 is closest to b; ¢, = a/||a|]| =
a/7is (4,5,2,2)/7.B=b—p = (-1,4,—4,—4)/7has |B|| = 1soq, = B.

18A4A=a=(1,-1,0,0B=b-p=(3,3,-1,0,C=c—py—pp =% 35—

Notice the pattern in those orthogonal 4, B,C. InR®, D would be (%, %, %, 3, —1).

20 (a) True (b) True. Qx = x14; + x245. |Qx||*> = x? + x2 because g, - ¢, = 0.

21 The orthonormal vectors are ¢; = (1,1,1,1)/2 and ¢, = (-5, -1, 1,5)/~/52. Then
b = (—4,-3,3,0) projectsto p = (—7,—3,-1,3)/2. Andb—p = (—1,-3,7,-3)/2
is orthogonal to both ¢; and ¢,.

22 A=(,1,2), B=(1,-1,0), C = (—1,—1,1). These are not yet unit vectors.

26 (g;C*)q, = g EB because g, = ”g” and the extra ¢, in C'* is orthogonal to ¢,.

28 There are mn multiplications in (11) and %mzn multiplications in each part of (12).
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30 The wavelet matrix W has orthonormal columns. Notice W~! = WT in Section 7.3.

1 0 O
32 0 = [(1) _(1)] reflects across x axis, O = |:0 0 —1] across plane y +z = 0.
o0 -1 0

33 Orthogonal and lower triangular = =1 on the main diagonal and zeros elsewhere.

Problem Set 5.1, page 251

1 det(24) = 8; det(—A4) = (—1)*det A = 1; det(4?) = 1; det(4™") = 2 = det(47) 1.
5 |Js|=1, |J¢|=—1, |J7|=—1. Determinants 1, I, —1, —1 repeat so |J191| = 1.
8 0TQ =1 = |Q)? =1= |0Q| = £1; Q" stays orthogonal so det can’t blow up.

10 If the entries in every row add to zero, then (1,1,...,1) is in the nullspace: singular
A has det = 0. (The columns add to the zero column so they are linearly dependent.)
If every row adds to one, then rows of 4 — I add to zero (not necessarily det A = 1).

11 CD = —-DC = detCD = (—1)*"det DC and not —det DC. If n is even we can have
an invertible CD.

14 det(A) = 36 and the 4 by 4 second difference matrix has det = 5.
15 The first determinant is 0, the second is 1 — 212 + t* = (1 — 1?)2.

17 Any 3 by 3 skew-symmetric K has det(KT) = det(—K) = (—1)3det(X). This is
—det(K). But always det(K¥) = det(K), so we must have det(K) = 0 for 3 by 3.

21 Rules 5 and 3 give Rule 2. (Since Rules 4 and 3 give 5, they also give Rule 2.)

18 7 .3 -
23 det(4) = 10, 4% = [14 11], det(4%) = 100, 47! = & [_2 4] has det 5.

det(A—Al) = A? =71 + 10 = 0 when A = 2 or A = 5; those are eigenvalues.
27 det A = abc, det B = —abcd, detC = a(b — a)(c — b) by doing elimination.

32 Typical determinants of rand(n) are 10°, 10%°,107°, 10?!2 for n = 50, 100, 200, 400.
randn(n) with normal distribution gives 103!, 1078, 10186 Inf which means > 21024,
MATLAB allows 1.999999999999999 x 21023 ~; 1.8 x 103%8 but one more 9 gives Inf!

MS&S.Z,'W%B

2 det A = —2, independent; det B = 0, dependent; det C = —1, independent.

4 aj1a23a32a44 gives —1, because 2 < 3, ajsarzazrag; gives +1,detA =1-1=0;
detB=2+4-4.2—1-4.-4.1=64—16=48.

6 (a) If a;; = az; = az3; = 0 then 4 terms are sure zeros (b) 15 terms must be zero.

8 Some term ajqa5g - - - Ape in the big formula is not zero! Move rows 1, 2, .. ., n into
rows «, 3, . . ., w. Then these nonzero a’s will be on the main diagonal.

9 To get +1 for the even permutations the matrix needs an even number of —1°s. For the
odd P’s the matrix needs an odd number of —1’s. So six 1’s and det = 6 are impossible
five 1’s and one —1 will give AC = (ad — bc)I = (det A)I max(det) = 4.
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ne=\_. , O =21 14l pugsle: det D = 441 = (—21)% Why?

" —b] D=[ 0 4 ’35] det B = 1(0) + 2(42) + 3(=35) = —21.
A 3 6 -3

3 2 1 4 00
12C=|(2 4 Z]andACT=[0 4 O:|.ThereforeA"1=%CT=CT/detA.

(1 2 3 0 0 4
13 @ C; =0, Ca=—-1,C3=0, Cy =1 (b) C, = —C,,—, by cofactors of row
1 then cofactors of column 1. Therefore C1g = —Cg = Cg = —C4 = C3 = —1.

15 The 1, 1 cofactor of the n by n matrix is £,_1. The 1, 2 cofactor has a single 1 in its
first column, with cofactor E,_,: sign gives —E,,_>. So E, = E,—1 — E,—,. Then E;
to Egis 1,0, —1, —1, 0, 1 and this cycle of six will repeat: Ej90 = E4 = —1.

16 The 1,1 cofactor of the » by n matrix is F,,—;. The 1,2 cofactor has a 1 in column
1, with cofactor F,,_,. Multiply by (—1)!*2 and also (—1) from the 1, 2 entry to find
F, = F,_1 + F,—2 (so these determinants are Fibonacci numbers).

19 Since x, x2, x> are all in the same row, they are never multiplied in det V4. The deter-

minant is zero at x = a or b or ¢, so det V' has factors (x — a)(x — b)(x — ¢). Multiply
by the cofactor V3. The Vandermonde matrix V;; = (x;)/ ! is for fitting a polynomial
p(x) = b at the points x;. It has det V = product of all xx — x,, for k > m.

20 G, =—1,G3 =2,G4 = —3,and G, = (—1)""1(n — 1) = (product of the A’s ).
24 (a) All L’s have det = 1; detU; = detA; = 2,6,—6 (b) Pivots 5,6/5,7/6.

CA™! 1 D
whichis |AD — ACA™!B|. If AC = CA thisis |AD — CAA™'B| = det(AD — CB).
27 (a) detA = a11Cyy + -+ + a1, Cyy. Derivative with respect to a1; = cofactor Cy;.

25 Problem 23 gives det [_ ! 0] = 1l and det[é B:| = |A| times |D—CA™1B|

29 There are five nonzero products, all 1’s with a plus or minus sign. Here are the (row,
column) numbers and the signs: + (1, 1)(2,2)(3,3)4.4) + (1,2)(2,1)(3,4)(4,3) —

32 The problem is to show that Fp,2 = 3F;, — F2,_». Keep using Fibonacci’s rule:
Fonio=Fop1+ Fan=Fon+ Fop1+ Fop =2F0 + (Fan — Fap2) =3F2, — Fop—a.

33 The difference from 20 to 19 multiplies its 3 by 3 cofactor = 1: then det drops by 1.

34 (a) The last three rows must be dependent (b) In each of the 120 terms: Choices
from the last 3 rows must use 3 columns; at least one of those choices will be zero.

Problem Set 5.3, page 278
2@ y=1[95|/
3 (a) x; = 3/0and x, = —2/0: no solution (b) x1 = xo = 0/0: undetermined.

4 (a) x; = det([b a> as])/detA,ifdetA # 0 (b) The determinant is linear in
its first column so x1 |@; > as|+x2|a; a; as|+xs|as ay as|. The last two determinants
are zero because of repeated columns, leaving x |@; a2 a3| which is x; det A.

= c¢/(ad — bc) (b) y =detBy/detA = (fg—id)/D.

ab
cd
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1 -2 0 NER — ‘ .
6@ lo L o ® -2 4 2| An invertible symmetric matrix
3 4 has a symmetric inverse.
0 _% 1 1 2 3
6 -3 0 3 0 07 Thisis(detA)! anddetAd = 3.
8C=| 3 1 —1{and4ACT=|0 3 0]. The 1, 3 cofactor of A is 0.
-6 2 1 0 0 3] Multiplying by 4 or 100: no change.

9 If we know the cofactors and detA = 1, then CT = A1 and also detA™! = 1.
Now A is the inverse of CT, so A can be found from the cofactor matrix for C.

11 The cofactors of A are integers. Division by det A = %1 gives integer entries in A~ 1.

15 Forn = 5, C contains 25 cofactors and each 4 by 4 cofactor has 24 terms. Each term
needs 3 multiplications: total 1800 multiplications vs.125 for Gauss-Jordan.

_|311| Area of faces i jk|_ —2-2j+8

17 Volume=}131]=20. length of cross product ~ |3 1 1|7 length=6+/2
18 (a) Area = 24l =5 (b) 5 + new triangle area 1 s ll=54+7=12
2los51| g 2101 -

21 The maximum volume is L1L,L3L4 reached when the edges are orthogonal in R*.
With entries 1 and —1 all lengths are /4 = 2. The maximum determinant is 2* = 16,
achieved in Problem 20. For a 3 by 3 matrix, det A = (+/3)> can’t be achieved.

al a'a 0 0
detAT4 = (llalllB]l]|cl))?
23 A" =|b"|[a b c]=| 0 b 0 |h
b [a & c] o bl 2| dea = Eallbliel

25 The n-dimensional cube has 2" corners, n2”~! edges and 2n (n—1)-dimensional faces.
Coefficients from (2 + x)" in Worked Example 2.4A. Cube from 2/ has volume 2”.

26 The pyramid has volume {. The 4-dimensional pyramid has volume 5 (and -%; in R®)

31 Base area 10, height 2, volume 20.

35 S =(2,1,-1), area |PQ x PS|| = ||(—2,-2,—1)|| = 3. The other four corners
can be (0,0,0), (0,0,2), (1,2, 2), (1, 1, 0). The volume of the tilted box is | det| = 1.

39 ACT = (det A)I gives (detA)(detC) = (det A)". Then detd = (detC)!/? with
n = 4. With det A~ is 1/ det A4, construct A~! using the cofactors. Invert to find A.

Problem Set 6.1, page 293

1 The eigenvalues are 1 and 0.5 for 4, 1 and 0.25 for A2, 1 and O for A®. Exchanging
the rows of A changes the eigenvalues to 1 and —0.5 (the trace is now 0.2 4+ 0.3).
Singular matrices stay singular during elimination, so A = 0 does not change.

3 Ahas A; = 2 and A, = —1 (check trace and determinant) with x; = (1,1) and
x2 = (2,—1). A™! has the same eigenvectors, with eigenvalues 1/A = % and —1.

6 Aand Bhave A\; = land X, = 1. AB and BA have 1 = 2 + /3. Eigenvalues of AB
are not equal to eigenvalues of A times eigenvalues of B. Eigenvalues of AB and BA
are equal (this is proved in section 6.6, Problems 18-19).
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8 (a) Multiply Ax to see Ax which reveals A (b) Solve (A —Alx = 0to find x.

10 Ahas Ay = land Ay = 4withx; = (1,2)and x, = (1,—1). A has A; = | and
A2 = 0 (same eigenvectors). A!° has A; = 1 and A, = (.4)1%9 which is near zero.
So A190 js very near A®: same eigenvectors and close eigenvalues.

11 Columns of A—A [ are in the nullspace of A—A,7 because M = (A—Ax1)(A—A1 1)
= zero matrix [this is the Cayley-Hamilton Theorem in Problem 6.2.32]. Notice that
M has zero eigenvalues (A} — A2)(A; — A1) =0and (A2 — A3)(A2 — A1) = 0.

13 (@) Pu= (uuu = u(@@™u) =usok =1 () Pv = (uu")v = u(u™v) = 0
() x1 =(-1,1,0,0), x, = (-3,0,1,0), x3 =(=5,0,0,1) allhave Px = 0x = 0.

15 The other two eigenvalues are A = %(—-1 + i +/3); the three eigenvalues are 1,1, —1.

16 Set A =0indet(A—Al)= (A1 —A)...(A, —A) tofinddet 4 = (A1)(A2) -+ (A,).

17 Ay = %(a +d+ J(@a—-d)?+4bc)and A; = -;-(a-!-d —~ )addtoa+d.
IfAhasA; =3and A, = 4thendet(d—Al) = (A —-3)(A —4) = A2 —-71 + 12.

19 (@) rank =2  (b) det(BTB) =0  (d) eigenvaluesof (B + 1)t are 1, 1, 3.

20 Last rows are —28, 11 (check trace and det) and 6, —11, 6 (to match det(C — Al)).

22 ) = 1 (for Markov), O (for singular), --% (so sum of eigenvalues = trace = %).

OPr |0 o |—-1 1
Cayley-Hamilton Theorem in Problem 6.2.32.

28 BhasA = —1,—1,—1,3and C has A = 1, 1, 1, —3. Both have det = —3.

32 (a) u is a basis for the nullspace, v and w give a basis for the column space
(b) x = (0,4, 3) is a particular solution. Add any cu from the nullspace
(c) If Ax = u had a solution, # would be in the column space: wrong dimension 3.

34 det(P — AI) = 0 gives the equation A* = 1. This reflects the fact that P* = [,
The solutions of A* = 1 are A = 1,i,—1, —i. The real eigenvector x; = (1,1,1,1)
is not changed by the permutation P. Three more eigenvectors are (i,i2,i3,i*) and
(1,—1,1,—1) and (=i, (—i)2, (=i)3, (=i)¥).

36 Ay = e2/3 and X, = e 27/3 give detAA, = 1 and trace Ay + Ay = —1.

— i . 2
A= [:?rls 90 scl:slgjl with = —; has this trace and det. So does every M1 AM!

23 [(1) O] [O L [_..1 1]. Always A? is the zero matrix if A = 0 and 0, by the

Problem Set 6.2, page 307

112__11101—1,11_1100%&—%
03—010301’33_—1304%%’
3 IfA = SAS™! then the eigenvalue matrix for 4 + 27 is A + 2] and the eigenvector
matrixis still S. A + 27 = S(A +21)S 1 =8SAS 1+ SQ2NS 1 = A +21.
4 (a) False: don’tknow A’s (b) True (c) True (d) False: need eigenvectors of S

6 The columns of S are nonzero multiples of (2,1) and (0,1): either order. Same for 471
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8

12
13

15

17

19
21

24

26

27

28

32

33

Cenemt MU 1T U Ay A 077 1 =22 enkemt
A=SAS —[10“m1 Lo a|l-1 a5 =

1 Ay As A’f 0 1 =X || 1] _ [ 2nd component is F
A=A L1 Lo ak][-1 Af]o] T [ =25/0n -2 |
(@) A= [? (5) has Ay =1, A, = ——% withx; = (1,1), x2 = (1,-2)

. 1 1171 o o | 3
(b) 4 2[1 —2][0 (-.5)"][ il"'”‘ =[§

(a) False: don’t know A (b) True: an eigenvector is missing (¢) True.

8 9 4 10 5| onlyeigenvectors
A= [3 2](orother) 4= [4 1]’A [5 O] are x = (c,—c).

A¥ = SA*S~1 approaches zero if and only if every |L| < 1; 4¥ — A, 4% — 0.
_19 0 _ {3 3 40|33 quo|3| 41of 3] _ ay0] 3
A‘[o .3]’ S—[l 1]’ Az {1}—('9) P A2 o [ =T g
A3 [(6)] = (.9)1° [?] + (.3)10 [‘“;’] because [(6)] is the sum of [?] + [_ﬂ
ge_[1 1[5 o) [1 1]_[s* s-#
10 —-11|0 4 0 -1 1o 4k '

trace ST = (aq + bs) + (cr + dt) is equal to (ga + rc) + (sb + td) = trace T'S.
Diagonalizable case: the trace of SAS™! = trace of (AS™H)S = A: sum of the A’s.

The A’s form a subspace since cA and A; + A, all have the same S. When § = 1
the A’s with those eigenvectors give the subspace of diagonal matrices. Dimension 4.

Two problems: The nullspace and column space can overlap, so x could be in both.
There may not be r independent eigenvectors in the column space.

R=SV/AS 1= [ 1:|has R2=A. /B needs A = +/9 and +/—1, trace is not real.

W= Wi

(AT
_

1 2

0

AT = A gIVCS xTABx = (Ax)T(Bx) < ||Ax||||Bx]| by the Schwarz inequality.
BT = —B gives —xTBAx = (Bx)T(Ax) < ||Ax||||Bx||. Add to get Heisenberg’s
Uncertainty Principle when AB — BA = I. Position-momentum, also time-energy.
IfA=SAS then (A—AI)---(A—A,I)equals S(A — Ay D) (A=A, 1)S™L.
The factor A — A ;I is zero in row j. The product is zero in all rows = zero matrix.

A =2,—1,0arein A and the eigenvectors are in S (below). AKX = SA¥S—1

[1 -1 1],\"-[2 -2 =2 [2 1 1]+ [—1 1 1]
1 —1 —1 6lo 3 -3 6|2 1 1 3 011 11

Check k = 4. The (2, 2) entry of A*is 24/6 + (—=1)*/3 = 18/6 = 3. The 4-step paths
that begin and end atnode 2 are 2to l1to 1to I t02,2to 1to2to 1 to 2,and 2to 1 to
3 to 1 to 2. Much harder to find the eleven 4-step paths that start and end at node 1.

Note that [_(1) __(1)] can have +/—1 = i and —i, trace 0, real square root [_(1) 1].
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35 BhasA =i and —i,so B*has A* = land 1 and B* = I. C has A = (1 & /3i)/2.
This is exp(£ni/3) so A3 = —1 and —1. Then C3 = —J and C19%* = —C,

37 Columns of S times rows of AS~! will give r rank-1 matrices (r = rank of A4).

Problem Set 6.3, page 325

1wy =e¥ [(l):l, u, = e [_i] If u(0) = (5,—2), then u(z) = 3e*! [(l)] + 2¢* [_i]

4 dlv+w)/dt = (w—v)+(v—w) = 0, so the total v + w is constant. A = [_} _i]

A1 =0 . 11 [ 1] v(@)=20+10e"% wv(c0) =20
has 12=_2 Wlthx1—[1],x2— [_l:la w(1)=20_loe—2 w(OO)=2O

8 [g _%] hasA; =5, x1 = [%], Ay =2, X3 = [;], rabbits 7 (¢) = 20e> + 10e?,
w(t) = 10e>* +-20e?’. The ratio of rabbits to wolves approaches 20/10; ¢! dominates.

12 A = [_g é] has trace 6, det 9, A = 3 and 3 with one independent eigenvector (1, 3).

14 When A is skew-symmetric, ||[u(¢)|| = [le4 u(0)] is ||z(0)||. So e is orthogonal.
15 up, =4andu(t) =ce’ +4; u, = [g] and u(?) = cy€’ I:;:I + coe’ [(1)] + l:‘;]

16 Substituting # = e v gives ce’v = Ae“'v—e“bor (A—cl)v = borv =
(A — ¢I)™'b = particular solution. If ¢ is an eigenvalue then 4 — ¢/ is not invertible.

20 The solution at time ¢ + T is also eA¢+T)y(0). Thus e“ times e47 equals eA¢+T),

21 1 41 _ {1 4111 0ff{1 4|1 4 et 0|1 41 € 4e' — 4
0O 0ol |10 =110 OO0 =1/[]0 -1 0O 1({0 -1y |0 1 ’
t Lt
22 A2=Agivese’“=I+At+%At2+-~=I+(e’—l)A=[% ¢ ) 1].
o1y o1t o]fr - a_ [e' LEe¥ —e)
24 A_[O 3]—[0 2] [0 3][0 :| Then e _[ .
26 (a) The inverse of e4? is ¢~4¢ (b) If Ax = Ax then e4’x = e*x and eM # 0.

0 e3t
27 (x,y) = (e*,e*) is a growing solution. The correct matrix for the exchanged u =

[ S L

(y,x)is _i 0l It does have the same eigenvalues as the original matrix.

28 Centering produces U, 4, = [—i&t 1—?21‘)2] U, AtAr =1, A = 73 and

e~i7/3 poth have A8 = 150 A% = I. Ug = AU comes exactly back to U .

First AhasA = +iand A* =1 ,, _ 2l 1—2n =2n ,
Second A has A = —1,—1 and A" = (=1) 2n 2n + 1 Linear growth.
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30 With a = Atr/2 the trapezoidal step is Up4+1 = L a*  2a U
nt 1+a2| —2a 1=-a?|""™
Orthonormal columns = orthogonal matrix = ||U+1]| = U]l

31 (a) (cosA)x = (cosA)x (b) A(A) = 2w and O socosA = 1,1 and cos4 = |
(©) u(?) = 3(cos2m1)(1,1)+1(cos0z)(1,—1) [u’ = Au has exp, u”’ = Au has cos]

Problem Set 6.4, page 337

3 A = 0,4, —2; unit vectors £(0, 1,—1)/+/2 and +(2,1,1)/+/6 and £(1, -1, —1)//3.

1 [ 2 1 2jl The columns of Q are unit eigenvectors of A

50=3 % :g dé " Each unit eigenvector could be multiplied by —1

8IfA3 =0thenall A> = 0Osoalll =0asin 4 = [g (1)] If A is symmetric then

A3 = QA3QT = 0 gives A = 0. The only symmetric A is @ 0 QT = zero matrix.
10 If x isnotreal then A = xT Ax /xTx is not always real. Can’t assume real eigenvectors!
| 1 1
3 14 _ 5 T3 3 3119 12 _ 64 —48 36 .48
M [1 3] =2 [_% %]”[% %]’ [12 16| =0—48 36]|7%°| .48 .64

14 M is skew-symmetric and orthogonal; A’s must be i, i, —i, —i to have trace zero.

16 (a) If Az = Ay and ATy = Az then B[y; —z]=[—Az; ATy]=-Aly; —z]. So
—A is also an eigenvalue of B. (b) ATAz = AT(Ay) =A%z. (¢) A =—1,-1,1, I;
x1=(1,0,-1,0), x» = (0,1,0,~1), x5 = (1,0,1,0), x4 = (0,1,0,1).

1 1 0 1 0 1 Perpendicular for 4
19 Ahas § = l:l -1 0]; B has S = I:O 1 O]. Not perpendicular for B
0 0 1 0 0 2d since BT # B

1 2] (b) True from AT = QAQT

0 1| (¢) Truefrom A~ = QA™IQT (d) False!

21 (a) False. A = [

22 A and AT have the same A’s but the order of the x’s can change. A = [_(1) (1)] has

Ay =iand A, = —i with x; = (1,7) first for 4 but x, = (1, —i) first for AT.

23 A is invertible, orthogonal, permutation, diagonalizable, Markov; B is projection, di-
agonalizable, Markov. A allows QR, SAS™!, QAQT; B allows SAS™! and QAQT.

24 Symmetry gives QAQT if b = 1; repeated A and no S if b = —1; singularif b = 0.
25 Orthogonal and symmetric requires |A| = 1 and A real, so A = £1. Then A = £1 or
t_|cos@ —sin@ |1 O cosf sind cos26  sin26
A= QAQT = -
sinf cos@||0 —1]|—sinf cosé sin26 —cos26 |’
27 The roots of A% + bA + ¢ = 0 differ by ~/b2 — 4¢. For det(4 + tB — AI) we have
b= —-3-—8tand ¢ = 2 + 16t — t2. The minimum of 4> — 4c is 1/17 att = 2/17.

Then A, — A = 1//17.
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29 (a) A = QAQ T times AT = QATQ T equals AT times 4 because AAT = ATA
(diagonal!) (b) step 2: The 1,1 entriesof T L T and TT T are |a|? and |a|? + |b|%.
This makes b = 0and T = A.

30 gy is [qll v qln] ["\'lqll e AIlqln] < Amax (|Q11| + o+ gl ) Amax-

31 (@) xT(4x) = (Ax)"x = xTATx = —xTAx. (b) zTAz is pure imaginary, its real
partis xTAx + yTAy =040 (c) detA=2A;...A, > 0:pairsof A’s = ib,—ib.

Problem Set 6.5, page 350

Positive definite 1 01 b 1 01 0 1 b _ T
3 for—3<b<3 [b 1][0 9— bz] [b 1][0 9—b2][0 1]—LDL

Positive definite 1 012 4 (_|1l O}j2 O 1 2} _ LDLT
forc > 8 2 1110 ¢c—8} 12 1]|0 c—=8]|]0 1| '

4 f(x,y)=x2+4xy +9y% = (x +2y)*> + 5y%; x? + 6xy + 9y? = (x + 3y)%.
8 A= '3 6] _[1 0][3 0][1 27 Pivots3,4 outside squares, £;; inside.
=16 16]=[2 1[0 4]|0 1| xTdx =3(x+2y)* +4y?

T2 -1 0 : 2 -1 -1 1 0
h t
10 A=|-1 2 —1] 2aséple)s B=[—-1 2 —ljlissingular;B[l:|=[0i|.

L 0 -1 2 1203 -1 -1 2 1 0
12 A is positive definite for ¢ > 1; determinants ¢,c? — 1,(c — 1)?(c +2) > 0. B is
never positive definite (determinants d — 4 and —4d + 12 are never both positive).

14 The eigenvalues of A~! are positive because they are 1/A(A4). And the entries of 4~!
pass the determinant tests. And xTA™lx = (A7 1x)TA(47'x) > Oforall x # 0.

17 If aj; were smaller than all A’s, A — a;;I would have all eigenvalues > 0 (positive
definite). But A — a ;I has a zero in the (j, j) position; impossible by Problem 16.

21 A is positive definite when s > 8; B is positive definite when ¢ > 5 by determinants.

[1 _1} [ﬁ } [ 1 1]

1 1 -1 1 2 1 3 1
V2 V2

24 The ellipse x2 + xy + y2 = 1 has axes with half-lengths 1/+/A = +/2 and 1/2/3.

9 374 '8 1 014 ol[1 2 2 4
— T — . _
25A“CC—[3 5]’[8 25] [2 1][0 9][0 1]3“‘“7—[0 3]

2
29 H, = 629; 2;] is positive definite if x # 0; F; = (3x% + y)* = 0 on the curve

ix24+y=0; H, = [61x (1)] = [(1) (1)] is indefinite, (0, 1) is a saddle point of F>.

31 If ¢ > 9 the graph of z is a bowl, if ¢ < 9 the graph has a saddle point. Whenc = 9
the graph of z = (2x + 3y)?isa trough” staying at zero on the line 2x 4 3y = 0.

32 Orthogonal matrices, exponentials e4*, matrices with det = 1 are groups. Examples of
subgroups are orthogonal matrices w1th det = 1, exponentials e4” for integer 7.

34 The five eigenvalues of K are 2 — 2 coskZ =2-3,2-1,2,24+ 1,2+ /3 :
product of eigenvalues = 6 = det K.
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Problem Set 6.6, page 360

1 B=GCG '=GF 'AFG 'soM=FG™!. C similarto A and B = A similarto B.

© Eight families of similar matrices: six matrices have A = 0, 1 (one family); three
matrices have A = 1, 1 and three have A = 0, 0 (two families each!); one has A =
1, —1; one has A = 2, 0; two have A = %(1 + +/5) (they are in one family).

7 (@ (M 'AMY(M'x) =M 1(Ax) = M~10=0  (b) The nullspaces of A and
of M~! AM have the same dimension. Different vectors and different bases.

Same A But A — 0 1 B = 0 2| have the same line of eigenvectors
Same S HA=10 0|2 =10 0| andthe same eigenvalues A = 0, 0.

2 k k—1 -1 _ .2
10 J2=[C 2“] andJk=[c ke ];J‘):IandJ‘1=[c ¢ ]

8

0 c2 0 ck 0 !

14 (1) Choose M; = reverse diagonal matrix to get M,.“l.li M; = M,-T in each block
(2) M has those diagonal blocks M; to get My ' UMy = JT. (3) AT = (M H)TJTMT
equals (M DTMGLIMMT = (MMM 1 A(MMoMT), and AT is similar to A.

17 (a) False: Diagonalize a nonsymmetric A = SAS~!. Then A is symmetric and similar

(b) True: A singular matrixhas A = 0. (¢) False: [_(1) (1)] and [(1) _(1)] are similar

(they have A = £1) (d) True: Adding I increases all eigenvalues by 1
18 AB = B~ 1(BA)B so AB issimilarto BA. If ABx = Ax then BA(Bx) = A(Bx).
19 Diagonal blocks 6 by 6, 4 by 4; AB has the same eigenvalues as BA plus 6 — 4 zeros.

22 A = MIM™',A* = MJ"M™! = 0 (each J* has 1’s on the kth diagonal).
det(A — AI) = A" so J” = 0 by the Cayley-Hamilton Theorem.

Problem Set 6.7, page 371

SR I ]|
1 A=U>3VT=[M1 uy [“1 0] [vl 02] =13 - 0 0J]2 -1
10 NG
2. 1] . 3+4/5 3—+/5 Butdis
4 ATA = AAT = 11 has eigenvalues 67 = 2 = —5 " indefinite
o1 = (1 + v/5)/2 = 11(4), 02 = (V5= 1)/2 = —A2(A); u; = vy but uy = —va.
5 A proof that eigshow finds the SVD. When V| = (1,0),V, = (0, 1) the demo finds
AV and AV, at some angle 8. A 90° turn by the mouse to V5, —V 1 finds AV, and

—AV at the angle &= — 6. Somewhere between, the constantly orthogonal v; and v,
must produce Av; and Av; at angle /2. Those orthogonal directions give u; and u,.

9 A= UVTsinceallg; = 1, which means that & = 1.
14 The smallest change in A is to set its smallest singular value o7 to zero.
15 The singular values of 4 + [ are not o; + 1. Need eigenvalues of (A + 1)T(4 + I).

17 A = UZVT = [cosines including u4] diag(sqrt(2 — +/2,2,2 + +/2)) [sine matrix]".
AV = UX says that differences of sines in V are cosines in U times ¢'’s.
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Problem Set 7.1, page 380

T(v) = (0,1) and T (v) = vyv2 are not linear.
@ S(T(w)) =v  (b) S(T(w1) + T(v2)) = S(T(v1)) + S(T(v2)).
Choose v = (1, 1) and w = (—1,0). T(v) + T(w) = (0,1) but T (v + w) = (0,0).

(7{12 7)"(T('v)) =v 0 T(Tw)=v+2,2) () TT@)=-v @ T(Tw)=
v).

10 Notinvertible: (a) T(1,0)=0 (b) (0,0, 1) is not in the range (¢) T0,1)=0.
12 Write v as a combination c¢(1, 1) 4+ d(2,0). Then T(v) = ¢(2,2) + d(0,0). T(v) =
(4,4); (2,2); (2,2);if v = (a,b) = b(1,1) + 552(2,0) then T(v) = b(2,2) + (0, 0).

16 No matrix A gives 4 |:(1) 8 = 8 (1)] To professors: Linear transformations on

N g e W

matrix space come from 4 by 4 matrices. Those in Problems 13—15 were special.
17 (a) True (b) True (¢) True (d) False.
19 T(T'M) =M soT7 V(M) =A"'MB1.

20 (a) Horizontal lines stay horizontal, vertical lines stay vertical (b) House squashes
onto a line (c) Vertical lines stay vertical because 7(1,0) = (a11,0).

27 Also 30 emphasizes that circles are transformed to ellipses (see figure in Section 6.7).

29 (a) ad —bc =0 (b) ad —bc > 0 (¢) jad — bc| = 1. If vectors to two
corners transform to themselves then by linearity T = I. (Fails if one corner is (0, 0).)

Problem Set 7.2, page 395

3 (Matrix A)> = B when (transformation T)?> = S and output basis = input basis.

5 T(v; + vy + v3) = 2w, + wy + 2ws; A times (1, 1, 1) gives (2, 1, 2).

6 v = c(vy—w3) gives T (v) = 0; nullspace is (0, ¢, —c); solutions (1,0,0) + (0, ¢, —¢).

8 For T?(v) we would need to know T(w). If the w’s equal the v’s, the matrix is 42.
12 (c) is wrong because w; is not generally in the input space.

14 (a) [g ;] ®) [_g | =inverseof @ © A[%] must be 24 [;]

2 17" [ 3 -1
wun =1 3|3 3] =3 3
18 (a,b) = (cos 8, —sin ). Minus sign from 071 = Q7.
20 wy(x) = 1 —x%; wi(x) = 3 (x2 —x); y = 4wy + 5w + 6ws.
23 The matrix M with these nine entries must be invertible.
27 If T isnotinvertible, T (vy), ..., T (v,) is not a basis. We couldn’t choose w; = T'(v;).
30 S takes (x,y)to(—x,y). S(T(v))=(-1,2). Sw)=(-2,1) and T(S(v))=(1, -2).

34 The last step writes 6, 6, 2, 2 as the overall average 4, 4, 4, 4 plus the difference 2, 2,
—2,—2. Thereforec; = 4andc; =2andc¢c; = landcy = 1.
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35 The waveletbasisis (1,1,1,1,1, 1,1, 1) and the long wavelet and two medium wavelets
(1,1,-1,-1,0,0,0,0),(0,0,0,0,1,1,—1, —1) and 4 wavelets with a single pair 1, —1.

36 If Vb = Wc then b = V~!We. The change of basis matrix is V™1 W.

37 Multiplication by [‘cl Z] with this basis is represented by 4 by 4 A = [‘g fé ]

38 If w; = Avy and wy = Av, then ayr = ayy = 1. All other entries will be zero.

Problem Set 7.3, page 406

10 20 1 |1 1 2
Tg — — _ . —
1 A'A = [20 40] has A =50and 0, v; = 7 [2], Vy = NG [_1], o1 = +/50.
A R =oqyuy and Avy, =0. u __L and AATu; =50 u
I [7 -11 1 10 20 ) . . .
3 A=0H = —E [1 7] ﬁ [20 40:|. H is semidefinite because A is singular.
+ /50 O|,r_ 2 i1 3 44,2 4 +_|.1 3
4‘4—"[0 0|V =52 64744 g 447 |3 of

T
7 [owu U = T+ I 1 1 this i T+ + T
141 OxU> ’UT = 01u1v; o2U2v,. 1N genera IS1SO1U 1V Orli,v,.

2

9 A% is A~ because A is invertible. Pseudoinverse equals inverse when A~! exists!

27 .12 36 .48 0
11 A=[1][5 0 0]VTandA+=V[0]:[.16};A+A=[.48 64 O:I;AA+=[1]
0 0 0 00

13 If det A = 0 then rank(A4) < #n; thus rank(A*) < nand det A = 0.

16 x* in the row space\ of A is perpendicular to ¥ — x 7 in the nullspace of ATA =
nullspace of A. The right triangle has ¢? = a? + b2.

17 AAYp = p, AAte =0, ATAx, =x,, ATAx, =0.

19 L is determined by £»;. Each eigenvector in S is determined by one number. The
countsare 1 +3for LU, 1+2+1for LDU, 1+3forQR, 1 +2+ 1forUTVT,
242+ 0for SAS™L

22 Keep only the r by r comner X, of T (the rest is all zero). Then A = UXZVT has the
required form A = UM, M] VT with an invertible M = M; X, M in the middle.

23 0O A||lu|_| Av | _ |u| Thesingular values of A are
AT ol|v| T AT | T % v eigenvalues of this block matrix.
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Problem Set 8.1, page 418

3 The rows of the free-free matrix in equation (9) add to [0 0 0] so the right side needs
fit ot fa=0. f =(=1,0,1) gives cou; —cous = —1,c3us —czus = —1,0 = 0.
Then #particular = (—¢; " — ¢35, —¢c5",0). Add any multiple of zpyispace = (1,1, 1)

d du dul’
4 [_ZJZ (C(X)E) dx=— [c(x)a:l():O(bdry cond) so we need ff(x) dx=0.

6 Multiply ATC1A; as columns of A] times c’s times rows of A;. The first 3 by 3
“element matrix” c;E; =[1 0 0]Tcy[1 O 0] has ¢y in the top left corner.
8 The solution to —u” =1 with u(0) =u(1) =01is u(x) = %(x —x2). Atx = -,:1;-, %, %, %
this gives # =2, 3, 3, 2 (discrete solution in Problem 7) times (Ax)*>=1/25.
11 Forward/backward/centered for du/dx has a big effect because that term has the large
coefficient. MATLAB: E = diag(ones(6,1),1); K = 64 x (2x eye(7) — E — E’);
D = 80 % (E— eye(7)); (K + D)\ones(7,1); % forward; (K — D’)\ones(7,1);
% backward; (K + D/2 — D'/2)\ones(7, 1); % centered is usually the best: more
accurate

Problem Set 8.2, page 428

-1 1 0 c 1
1 4= {—1 0 1 ]; nullspace contains [c :l ; [O] is not orthogonal to that nullspace.
0 -1 1 c 0

2 ATy = 0for y = (1,—1,1); current along edge 1, edge 3, back on edge 2 (full loop).

5 Kirchhoff’s Current Law ATy = f is solvable for f = (1,—1,0) and not solvable
for f = (1,0,0); f mustbe orthogonal to (1, 1, 1) in the nullspace: fi+ fo+ f3 = 0.

2 -1 -1 3 1 c
6 ATAx = [—1 2 —l]x = [—3] = f produces x = |:—~1] + I:c]; potentials
-1 -1 2 0 0 c

x = 1,—1,0 and currents —Ax = 2, 1, —1; f sends 3 units from node 2 into node 1.

1 3 -1 =2 1 5/4 c
7AT|: 2 ]A:[—l 3 —2]; fz[ O:| yieldsx=|: 1 :|+ any [c];
2 -2 -2 4 —1 7/8 c

; =311 — =131
potentials x = 7,1, ¢ and currents —CAx = 3, 7, 7.

9 Elimination on Ax = b always leads to yTh = 0 in the zero rows of U and R:
—by + by — b3s = 0 and b3 — by + bs = 0 (those y’s are from Problem 8 in the left
nullspace). This is Kirchhoff’s Voltage Law around the two loops.

2 -1 -1 07 diagonal entry = number of edges into the node
—1 3 —1 —1 ) thetraceis 2 times the number of nodes
-1 -1 3 =1 off-diagonal entry = —1 if nodes are connected
0 —1 —1 2| ATAisthe graph Laplacian, ATCA is weighted by C

_‘21 —g :g _g gives four potentials x = (3, £, £,0)

1
0

13 ATCAx=|_5 _3 g _3|x=| | leroundedxs =0 and solved for x
—1

0 -3 -3 6 currents y = —CAx = (%,%,0, 3, 3)

11 ATA =
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17 (a) 8 independent columns (b) f must be orthogonal to the nullspace so f’s add
to zero (c) Each edge goes into 2 nodes, 12 edges make diagonal entries sum to 24.

Problem Set 8.3, page 437

6 —1][1 1 1] ,o_[6 —1]]1 O] 1 1]_[6.6
2‘4:[.4 1][ _75] [—.4 .6]”400_[.4 —1][0 0] [—.4 .6]_[.4 4l
3A=1and .8, x=(1,0);land—8, x =(3,%); 1,5,and 7, x = (3,3, 3).

5 The steady state eigenvector for A = 1 is (0,0, 1) = everyone is dead.

[PM )

6 Add the components of Ax = Ax tofindsums = As. If A # 1 the sum must be s = 0.

7 (5% — 0 gives A* — A®; any 4 = ['6 t4a 6- .6a] with axl

4—.4a .44 .6a .4+.€a20
9 M?2 is still nonnegative; [1 -+ 1]JM =[1 --- 1]so multiply on the right by M to
find[1 --- 1]M?>=[1 --- 1] = columns of M? addto 1.

10 A = 1 and a + d — 1 from the trace; steady state is a multiple of x{ = (b, 1 — a).

12 Bhas A = 0and —.5 withx; = (.3, .2)andx, = (—~1,1); Ahas A = 1so A — I has
A = 0. e~ approaches zero and the solution approaches c1e% x| = c1x;.

13 x = (1,1, 1) is an eigenvector when the row sums are equal; Ax = (.9,.9,.9).

32 S50
16 A = 1 (Markov), 0 (singular), .2 (from trace). Steady state (.3, .3, .4) and (30, 30, 40).

17 No, A has an eigenvalue A = 1 and (I — A)~! does not exist.

15 The first two A’s have Ay < 1 p = [2} and [130]; I— ['5 1] has no inverse.

19 A times S™!AS has the same diagonal as S~!AS times A because A is diagonal.
20 If B> A>0and Ax = Anax(A)x >0 then Bx > A (A)x and Apay (B) > Aax (A).

Problem Set 8.4, page 446

1 Feasible set = line segment (6, 0) to (0, 3); minimum cost at (6, 0), maximum at (0, 3).
2 Feasible set has corners (0, 0), (6, 0), (2, 2), (0, 6). Minimum cost 2x — y at (6, 0).
3 Only two corners (4,0,0) and (0, 2,0); let x; — —o0, xo = 0, and x3 = x; — 4.

4 From (0,0, 2) move to x = (0, 1, 1.5) with the constraint x; + x5 + 2x3 = 4. The new
cost is 3(1) + 8(1.5) = $15so r = —1 is the reduced cost. The simplex method also
checks x = (1,0, 1.5) with cost 5(1) + 8(1.5) = $17; r = 1 means more expensive.

5 ¢ =[3 5 7] has minimum cost 12 by the Ph.D. since x = (4,0, 0) is minimizing.
The dual problem maximizes 4y subjectto y <3,y <5, y <7. Maximum = 12.

8 yTh < yTAx = (AVy)Tx < ¢Tx. The first inequality needed y > O and Ax —b > 0.
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Problem Set 8.5, page 451

Ny 2x
1 fozn cos((j +k)x)dx = [S“’((J—.f:',f)—x—)-]o = 0 and similarly fozn cos((j —k)x)dx =0
Notice j — k # 0 in the denominator. If j = k then fozn cos? jxdx = m.

4 [} ()3 —cx)dx =0and [} (x2 — 1)(x3 — cx) dx = 0 for all ¢ (odd functions).
Choose ¢ so that f_ll x(x3—cx)dx = [1x5 - $x3]L, =2 —¢2 =0.Thenc = 2.

5 The integrals lead to the Fourier coefficientsa; = 0, by =4/m, b, = 0.

6 From eqn. (3) ax = 0 and by = 4/rrk (odd k). The square wave has || f||?> = 2x.
Theneqn. (6)is 2w = (16/ 71'2)(112 + 32 + 52 +---). That infinite series equals 2 /8.

8 o> =1+5+5+5+ - =2s0|v]l = V2 |v|> = 1+a®+a*+-. = 1/(1-a?)
so lvl| = 1/v/T—a?; [ZF(142sinx +sin®x)dx =27 +0+ 7 so | f|| = +/37.

9 (a) f(x) = (1 + squarewave)/2 so the a’s are %, 0,0,... and the b’s are 2/m, 0,
—2/37,0,2/5%,...  (b) ap = [T xdx/2n = x, all otheray = 0,b = —2/k.

11 cos?

— 141 . LAY T _sinysinZ = 1 _ B
X =3 —I—2coszx, cos(x + 3) = COS X COS 7 —SIXSIN 5 = 5 COS X — —5= SIN X.
1 sin(kh/2)

1
1 = — = — - 7 -
3 a0 27 J Fx)dx 2 nkh/2 T

for delta function; all ; = 0.

Problem Set 8.6, page 458

3 If 03 = 0 the third equation is exact.

4 0,1,2 have probabilities , 3,3 and 62 = (0— 1)2 + (1 - )23 + 2 - 1)?3 = 3.

5 Mean ( ) Independent flips lead to X = diag(1 4 4) Trace = 02, = 1

total — 2°
6 Mean m = pg and variance 62 = (1 — pg)? po + (0 — po)*(1 — po) = po(l — po).
7 Minimize P = a%02+(1—a)?02 at P’ = 2a0?—2(1—a)o? = 0;a = 67/(c%+02)
recovers equation (2) for the statistically correct choice with minimum variance.
8 Multiply LYLT = (ATE 1A IATE 1Y 14ATE 141 = P = (AT 14)~ L.
9 Row 3 = —row 1 and row 4 = —row 2: A has rank 2.

Problem Set 8.7, page 464

1 (x,y, z) has homogeneous coordinates (cx,cy,cz,c) forc = 1 and all ¢ # 0.
4 S =diag(c,c,c,1);tow4of ST and TS is 1,4,3,1 and ¢, 4c,3c, 1; use vTS!

1/8.5
55:[ 1/11
1

221 i[> 4 2
9n=( )hasP-I—nn -4 5 -=2|. Notice ||rn| = 1.
33’3 9 2 2 8

:| for a 1 by 1 square, starting from an 8.5 by 11 page.
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5 -4 -2 0
10 We can choose (0, 0, 3) on the plane and multiply 7_ P74 = % :g _g —é 8

6 6 3 9
11 (3,3, 3) projects to 3(—1,—1,4) and (3,3, 3, 1) projects to (3, 3, 2, 1). Row vectors!

13 That projection of a cube onto a plane produces a hexagon.

1 -8 —4
111 11 11 1
14 1~y I_2 T = PR S _8 1 —4 =\ >3}
(3,3,3)( nn') (3 3 3) |;4 L 7:| ( 373 3)

15 (3,3,3,1) > (3,3,0,1) > (-%,-2,-§, 1) » (-1,-%,%,1).
17 Space is rescaled by 1/¢ because (x, y, z, ¢) is the same point as (x/c, y/c,z/c, 1).

Problem Set 9.1, page 472

1 Without exchange, pivots .001 and 1000; with exchange, 1 and —1. When the pivot is

1 1 1

larger than the entries below it, all |£;;| = |entry/pivot| < 1. 4 = | 0 1 —1].
-1 1 1

4 Thelargest |x|| = ||A7 8| is ||A7|| = 1/Amin since AT = A; largest error 10716 /A in.

5 Each row of U has at most w entries. Then w multiplications to substitute components
of x (already known from below) and divide by the pivot. Total for #n rows < wn.

6 The triangular L™!, U™}, R~! need 3n? multiplications. Q needs n? to multiply the
right s1de by 07! = OT.So QRx = b takes 1.5 times longer than LUx = b.
7 UU~! = I: Back substitution needs 1 5] 2 multiplications on column j, using the j
by j upper left block. Then (12 + 22 +--- + n?) ~ 1(3n3) = total to find U,
10 With 16-digit floating point arithmetic the errors ||X — Xcomputed|| for & = 1073, 1076,
1072, 10712, 10715 are of order 10716, 10711, 1077, 1074, 1073.
_ =3 _ 1 |10 14 A=4; use — 0
7o siné = m’R"QZIA“T/ﬁ[ 0 ] ® ¢ —(1,-3)//10

13 Q;;Auses4n multlphcatlons (2 for each entry in rows { and j). By factoring out cos 6,
the entries 1 and & tan 6 need only 2n multiplications, which leads to %—n3 for QR.

11 (@)cosd =

Problem Set 9.2, page 478

104l =2 47 =2c=4 4] =3, |4 =Lec=3 4| =2+V2=
Amax for positive definite A, | 47| = 1/Amin, ¢ = 2+ v/2)/(2— V/2) = 5.83.

3 For the first inequality replace x by Bx in ||Ax|| < ||A|l[|x||; the second inequality is
just | Bx|| < | B||l|x]|. Then |AB|| = max(|ABx|/llx|}) < | AllBI.

7 The triangle inequality gives |Ax + Bx| < ||Ax|| + || Bx||. Divide by ||x|| and take
the maximum over all nonzero vectors to find ||A + B < || 4| + || B]l.
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8 If Ax = Ax then ||Ax||/||x|| = |A| for that particular vector x. When we maximize
the ratio over all vectors we get ||A]| > |A|.

13 The residual b — Ay = (1077, 0) is much smaller than b — Az = (.0013,.0016). But
z is much closer to the solution than y.

14 det A = 10~6 50 A=) = 103[ 659 "563]- A > 1, [A~1] > 105, then ¢ > 10S.

913 780 |

16 x%-l— -+x2 is not smaller than max(x?) and not larger than (|x1 |+ - -+|x, )% = | x||3.
xZ A4 e x2 < n max(x?) so ||| < +/n||x]lo. Choose y; = signx; = 1 to get

||x||1 =x-y < |xllyl = vulx|. x = (1,.... D) has |x]; = va ||x].

Problem Set 9.3, page 489

2 If Ax = Ax then (/—A)x = (1-A)x. Real eigenvaluesof B = I —A have |1-1] < 1
provided A is between O and 2.

6 Jacobihas S7IT = % [(1) (1)} with |A|max = % Small problem, fast convergence.

0

7 Gauss-Seidel has ST = [0

] with |A|max = 5 Which is (|A|max for Jacobi)?.

O I

9 Set the trace 2—2w + %wz equal to (w —1) +(w—1) to find wop; = 4(2— V3) &~ 1.07.
The eigenvalues w — 1 are about .07, a big improvement.

(j+Drw

_ Jr e U-Dr
= 2sin sin X—— et

n+1 n+1 n+1

+ COSm Thenll =2— 2COSm

- L2 1] . 112 1[5 1114 1/2
1 1 _ _ —
17 A —3[1 z]glvesul—3[1],112—9[4],113—27 [13]—>u [1/2]

cos (1 +sin*0)  —sin®6
—sin> ¢ —cosfsin?0 |

15 In the jth component of Ax;, A;sin — sin

The last two terms combine into —2 sin

18 R= Q%4 = [(1) Cﬁssfnszuée] and A, = RQ = [

20 If A—cI = QRthen A; = RQ +cI = Q7Y (QR + cI)Q = Q"1 AQ. No change
in eigenvalues because A; is similar to A4.

21 Multiply Aq; =bj—19;_;+a;q; +b;q ;4 byqj toﬁndq Aq ; = a; (because the
q’s are orthonormal). The matrix form (multiplying by columns) is AQ = QT where
T is tridiagonal. The entries down the diagonals of T are the a’s and b’s.

23 If A is symmetric then 4; = Q" 'AQ = QTAQ is also symmetric. A} = RQ =
R(QOR)R™! = RAR! has R and R™! upper triangular, so A; cannot have nonzeros
on a lower diagonal than A. If A is tridiagonal and symmetric then (by using symmetry
for the upper part of A;) the matrix A; = RAR™! is also tridiagonal.

26 If each center a;; is larger than the circle radius r; (this is diagonal dominance), then
0 is outside all circles: not an eigenvalue so A~! exists.
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Problem Set 10.1, page 498
2 In polar form these are v/5¢'%, 5¢29,

Se—ie’ \/g

4 zxw|=6, z+w| =<5 |z/w|=3%, |z—w| <5

1] k‘l'—‘

S atib=fot by i —h o Lo = L
9241 Q411 +i)=143i; e =—i; 7" = —1; 17 =—i; ()P =1,
10 z + Z is real; z — Z is pure imaginary; zZ is positive; z /Z has absolute value 1.

12 (@) Whena = b = d = 1 the square root becomes +/4c; A is complex if ¢ < 0
(b) A=0and A =a + d whenad = bc (c) the A’s can be real and different.

13 Complex A’s when (a+d)? < 4(ad —bc); write (a+d)*—4(ad —bc) as (a—d)*+4bc
which is positive when bc > 0.

14 det(P —AI) = A*~1 =0has A = 1, -1, i, —i with eigenvectors (1,1,1, 1) and
(1,-1,1,—-1)and (1,i{,-1,—i) and (1,—i,—1,{) = columns of Fourier matrix.

16 The symmetric block matrix has real eigenvalues; so i A is real and A is pure imaginary.
18 r = 1, angle Z — §; multiply by €% to get &/™/? = .

21 cos 30 =Re[(cos 6+i sin §)*] =cos® 6—3 cos @ sin? 8; sin 30 =3 cos? @ sin §—sin> .
23 ¢! is at angle & = 1 on the unit circle; |i¢| = 1¢; Infinitely many i€ = ¢!(v/2+2mn)e,

24 (a) Unitcircle (b) Spiralintoe™2* (c) Circle continuing around to angle 9 =272,

Problem Set 10.2, page 506

3 z = multiple of (1+i,1+4i,—2); Az = 0 gives z7A¥ = 0" 50 z (not Z!) is orthogonal
to all columns of A (using complex inner product zF times columns of A™).

4 The four fundamental subspaces are now C(4), N(A), C(A"), N(A™). A" and not A™.

5 (a) (AHAH = A¥ATH — gH4 again  (b) If AHAz = 0 then (zH4AY)(42) = 0.
This is [|Az]|2 = 0 s0 Az = 0. The nullspaces of A and AP A are always the same.

6 Eg g:{zz =U= |:_(1) (1):| (b) True: —i isnot an eigenvalue when A = A%,

10 (1,1,1), (1,273 ¢47il3) (1, e*7i/3 ¢271/3) are orthogonal (complex inner product!)
because P is an orthogonal matrix—and therefore its eigenvector matrix is unitary.

2 5 4
11 C = [4 2 S} = 2 4+ 5P + 4P? has the Fourier eigenvector matrix F.
5 4 2

The eigenvalues are 2 + 5 + 4 = 11, 2 + 5e27i/3 | 447i/3 9 4 5p47il3 | 4o37i/3,
13 Determinant = product of the eigenvalues (all real). And A = A" gives det A = det A.

sa- L[ 1 —1+i][2 01 L[ 1 1-i
S AL+ 1 [lo 1| A-1-i 1]
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I++3 =141 0} ,;[14++3 1-i .
18 v=1 i L2 = 3.
8 L[ 1+ 1+\/§M0 —1]L[—1—i [ 43| 6+2+/3

Unitary means [A| = 1. V = V! gives real A. Then trace zero gives A = 1 and —1.
19 The v’s are columns of a unitary matrix U, so UH is U, Then z = UUHz =

(multiply by columns) = v (v%z) + -+ + v,(v!2): a typical orthonormal expansion.
20 Don’t multiply (e ~**)(e'*). Conjugate the first, then [~ e?/* dx = [2'*/2i]2" = 0.
21 R+iS=(R+iS)H = RT—iST; R issymmetric but § is skew-symmetric.

. . a bticl [w €%z | with|w]?+|z|2 =1

24 [1]and[—1]; any[e"™]; [b —ic d }’ [—z e!w | and any angle ¢
27 Unitary UHU = I means (AT—iBT)(A+iB) = (ATA+BT"B)+i(ATB—BTA) = I.

ATA + BTB = I and ATB — BTA = 0 which makes the block matrix orthogonal.

(1=i 1=i||1 o]l |2+42i -2 _ _ _
30 A_[_l 2 ][0 4]6[1+i 2:]-hSAS . Note real A = 1 and 4.

Problem Set 10.3, page 514

8¢~ (1,1,1,1,0,0,0,0) — (4,0,0,0,0,0,0,0) — (4,0,0,0,4,0,0,0) = Fge.
¢ —(0,0,0,0,1,1,1,1) - (0,0,0,0,4,0,0,0) - (4,0,0,0,—4,0,0,0) = F3sC.
9 If w* = 1 then w? is a 32nd root of 1 and +/w is a 128th root of 1: Key to FFT.
13 e; =co+c1+cr+c3and ey = ¢cg + c1i + c2i? + ¢3i3; E contains the four
eigenvalues of C = FEF~! because F contains the eigenvectors.
14 Eigenvaluese; =2—1—-1=0, e =2—i—i3=2, e3=2—(-1)—-(-1) =4,
es = 2 —i3 —i% = 2. Just transform column 0 of C. Check trace 0 +2+ 4 +2 = 8.
15 Diagonal E needs n multiplications, Fourier matrix F and F~! need %_—n log, n multi-
plications each by the FFT. The total is much less than the ordinary n? for C times x.





