
Chapter 10 

Complex Vectors and Matrices 

10.1 Complex Numbers 

A complete presentation of linear algebra must include complex numbers. Even when the 
matrix is real, the eigenvalues and eigenvectors are often complex. Example: A 2 by 2 
rotation matrix has no real eigenvectors. Every vector in the plane turns by (}-its direction 
changes. But the rotation matrix has complex eigenvectors (1, i) and (1, -i). 

Notice that those eigenvectors are connected by changing i to -i. For a real matrix, the 
eigenvectors come in "conjugate pairs." The eigenvalues of rotation by () are also conjugate 
complex numbers e iO and e-iO . We must move from Rn to en. 

The second reason for allowing complex numbers goes beyond.A and x to the matrix A. 
The matrix itself may be complex. We will devote a whole section to the most important 
example-the Fourier matrix. Engineering and science and music and economics all use 
Fourier series. In reality the series is finite, not infinite. Computing the coefficients in 
cleix + C2ei2X + ... + cneinx is a linear algebra problem. 

This section gives the m~in facts about complex numbers. It is a review for some 
students and a reference for everyone. Everything comes from i 2 = -1. The Fast Fourier 
Transform applies the amazing formula e 27Ci = 1. Add angles when e iO multiplies e iO : 

The square ofe 27Ci / 4 = i ise 47Ci / 4 = -1. Thefourthpowerofe 27Ci / 4 ise 27Ci = 1. 

Adding and Multiplying Complex Numbers 

Start with the imaginary number i. Everybody knows that x 2 = -1 has no real solution. 
When you square a real number, the answer is never negative. So the world has agreed on 
a solution called i. (Except that electrical engineers call it j.) Imaginary numbers follow 
the normal rules of addition and multiplication, with one difference. Replace i 2 by -1. 
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If I add 3 + i to 1 - i, the answer is 4. The real numbers 3 + 1 stay separate from the 
imaginary numbers i - i. We are adding the vectors (3, 1) and (1, -1). 

The number (1 + i)2 is 1 + i times 1 + i. The rules give the surprising answer 2i : 

(I + i)(1 + i) = 1 + i + i + i 2 = 2i. 

In the complex plane, I + i is at an angle of 45°. It is like the vector (1, 1). When we square 
I + i to get 2i, the angle doubles to 90°. If we square again, the answer is (2i)2 = -4. 
The 90° angle doubled to 180°, the direction of a negative real number. 

A real number is just a complex number z = a + bi, with zero imaginary part: b = O. 
A pure imaginary number has a = 0: 

The real part is a = Re (a + bi). The imaginary part is b = 1m (a + bi). 

The Complex Plane 

Complex numbers correspond to points in a plane. Real numbers go along the x axis. Pure 
imaginary numbers are on the y axis. The complex number 3 + 2i is at the point with 
coordinates (3,2). The number zero, which is 0 + Oi, is at the origin. 

Adding and subtracting complex numbers is like adding and subtracting vectors in the 
plane. The real component stays separate from the imaginary component. The vectors go 
head-to-tail as usual. The complex plane C 1 is like the ordinary two-dimensional plane R2, 
except that we mUltiply complex numbers and we didn't multiply vectors. 

Now comes an important idea. The complex conjugate of 3 + 2i is 3 - 2i. The 
complex conjugate of z = I - i is z = I + i. In general the conjugate of z = a + bi is 
1 = a - bi. (Some writers use a "bar" on the number and others use a "star": z = z*.) 
The imaginary parts of z and "z bar" have opposite signs. In the complex plane, z is the 
image of z on the other side of the real axis. 

Two useful facts. When we multiply conjugates z 1 and z 2, we get the conjugate of z 1 Z 2. 

When we add ZI and 12, we get the conjugate of ZI + Z2: 

Zl + Z2 = (3 - 2i) + (1 + i) = 4- i. This is the conjugate of ZI + Z2 = 4 + i. 
Zl XZ2 = (3-2i) x (1 +i) = 5 + i. This is the conjugateofz1 x Z2 = 5 -i. 

Adding and multiplying is exactly what linear algebra needs. By taking conjugates of 
Ax = AX, when A is real, we have another eigenvalue A and its eigenvector x: 

If Ax = AX and A is realthen Ax = AX. (1) 
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z = 3 + 2i 

Real axis 
2 3 

Conjugate z = 3 - 2i 

Figure 10.1: The number z = a + bi corresponds to the point (a, b) and the vector [~]. 

Something special happens when z = 3 + 2i combines with its own complex conjugate 
z = 3 - 2i. The result from adding z + z or multiplying zz is always real: 

z + z = real 
zz = real 

(3 + 2i) + (3 - 2i) = 6 (real) 
(3 + 2i) x (3 - 2i) = 9 + 6i - 6i - 4i 2 = 13 (real). 

The sum of z = a + bi and its conjugate z = a - bi is the real number 2a. The product 
of z times z is the real number a2 + b2 : 

Multiply z times z (2) 

The next step with complex numbers is 1/ z. How to divide by a + i b? The best idea is to 
multiply by z/z. That produces zz in the denominator, which is a2 + b2 : 

:t _ I a - i bg---; l'~ , 1 

a + i b a - i b - . '#~+B~ 3 + 2i 

1 3 - 2i 

3 + 2i 3 - 2i 

3 -2i 

13 

In case a2 + b2 = 1, this says that (a + ib)-l is a - ib. On the unit circle, lIz equals z. 
Later we will say: l/ei8 is e-i8 (the conjugate). A better way to multiply and divide is to 
use the polar form with distance r and angle e. 

The Polar Form re i6 

The square root of a2 + b2 is Izl. This is the absolute value (or modulus) of the number 
z = a + i b. The square root 1 z 1 is also written r, because it is the distance from 0 to z. 
The real number r in the polar form gives the size of the complex number z: 

The absolute value of z = a + i b islzl;::i;J(i2,~ti8'.~., This is called r. 

The absolute value of z = 3 + 2i IS Izl = )32 + 22. This is r = m. 
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The other part of the polar form is the angle 8. The angle for z = 5 is 8 = 0 (because 
this z is real and positive). The angle for z = 3i is Jr /2 radians. The angle for a negative 
z = -9 is Jr radians. The angle doubles when the number is squared. The polar form is 
excellent for multiplying complex numbers (not good for addition). 

When the distance is r and the angle is 8, trigonometry gives the other two sides of the 
triangle. The real part (along the bottom) is a = r cos 8. The imaginary part (up or down) 
is b = r sin 8. Put those together, and the rectangular form becomes the polar form: 

Thenumber z :::u+ih is also z == rc()s8 + ir sifi.8.Thisis re i6 

Note: cos 8 + i sin 8 has absolute value r = 1 because cos2 8 + sin2 8 = 1. Thus 
cos 8 + i sin 8 lies on the circle of radius I-the unit circle. 

Example 1 Find rand 8 for z = 1 + i and also for the conjugate z = 1 - i. 

Solution The absolute value is the same for z and z. For z = 1 +i it is r = .Jl + 1 = .J2: 

and also 

The distance from the center is .J2. What about the angle? The number 1 + i is at the 
point (1, 1) in the complex plane. The angle to that point is Jr / 4 radians or 45°. The cosine 
is 1/.J2 and the sine is I/.J2. Combining rand 8 brings back z = 1 + i: 

r cos 8 + i r sin 8 = h ( ~) + i h ( ~) = 1 + i. 

The angle to the conjugate 1 - i can be positive or negative. We can go to 7 Jr /4 radians 
which is 315°. Or we can go backwards through a negative angle, to -Jr/4 radians or 
-45°. If z is at angle 8, its conjugate z is at 2Jr - 8 and also at -8. 

We can freely add 2Jr or 4Jr or -2Jr to any angle! Those go full circles so the final point 
is the same. This explains why there are infinitely many choices of 8. Often we select the 
angle between zero and 2Jr radians. But -8 is very useful for the conjugate z. 

Powers and Products: Polar Form 

Computing (1 + i)2 and (1 + i)8 is quickest in polar form. That form has r = .J2 and 
8 = Jr / 4 (or 45°). If we square the absolute value to get r2 = 2, and double the angle to 
get 28 = Jr/2 (or 90°), we have (1 + i)2. For the eighth power we need r8 and 88: 

8 Jr 
r = 2·2·2·2 = 16 and 88 = 8· '4 = 2Jr. 

This means: (1 + i)8 has absolute value 16 and angle 2Jr. The eighth power of 1 + i is the 
real number 16. 

Powers are easy in polar form. So is multiplication of complex numbers. 
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Theppl~fotm()rznh~sa.l?$olute value tn, Theangleis,n, times (I: 

In that case z multiplies itself. In all cases, multiply r's and add the angles: 

r(cos8 + i sin 8) times ,.'(cos8' + i sin 8') = rr'(cos(8 + 8') + i sin(8 + 8'»). (4) 

One way to understand this is by trigonometry. Concentrate on angles. Why do we get the 
double angle 28 for z2? 

(cos 8 + i sin 8) x (cos 8 + i sin 8) = cos2 8 + i 2 sin2 8 + 2i sin 8 cos 8. 

The real part cos2 8 - sin2 8 is cos 28. The imaginary part 2 sin 8 cos 8 is sin 28. Those are 
the "double angle" formulas. They show that 8 in z becomes 28 in Z2. 

There is a second way to understand the rule for zn. It uses the only amazing formula 
in this section. Remember that cos 8 + i sin 8 has absolute value 1. The cosine is made up 
of even powers, starting with I - ~82. The sine is made up of odd powers, starting with 

8 - -k83. The beautiful fact is that eie combines both of those series into cos 8 + i sin 8: 

x I 2 I 3 e = 1 + x + -x + -x + ... 
2 6 

Write -1 for i 2 to see 1 - ~82. The complex number e i9 is cos (J + i sin (J: 

Euler'sFormula eie = cos 8 + i sin 8g~ves:, z = r cos 8 + i r sin 8 = reie '(5) 

The special choice 8 = 2Jr gives cos 2Jr + i sin 2Jr which is 1. Somehow the infinite series 
e2ni = 1 + 2Jri + ~(2Jri)2 + ... adds up to 1. 

Now multiply eiB times eiB'. Angles add for the same reason that exponents add: 

The powers (reie)n are equal to ,.neinB . They stay on the unit circle when r 1 
and rn = 1. Then we find n different numbers whose nth powers equal 1 : 

, ' -.. , 

S t - 2nijn '~'h" 't'h' ,.Fl ," 'Z. ' ,,,--ll'l" "'I' I' ", e,' W - e . .1.1 en powers oJ; ,w,w, ... ,w ',a, eq1l.a. 

Those are the "nth roots of I." They solve the equation zn = 1. They are equally spaced 
around the unit circle in Figure 10.2b, where the full 2Jr is divided by n. Multiply their 
angles by n to take nth powers. That gives wn = e2ni which is 1. Also (w2)n = e4ni = 1. 
Each of those numbers, to the nth power, comes around the unit circle to 1. 
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-1 
6 solutions to zn = 1 

e127ri/6 = e27ri = 1 

Figure 10.2: (a) Multiplying eie times eie'. (b) The nth power of e27ri/ n is e27ri = 1. 

These n roots of 1 are the key numbers for signal processing. The Discrete Fourier 
Transform uses wand its powers. Section 10.3 shows how to decompose a vector (a signal) 
into n frequencies by the Fast Fourier Transform. 

• REVIEW OF THE KEY IDEAS • 

1. Adding a + ib to e + id is like adding (a, b) + (e, d). Use i2 = -1 to mUltiply. 

2. The conjugate of z = a + bi = re ie is z = z* = a - bi = re-i(). 

3. z times z is re ie times re-ie . This is r2 = Izl2 = a2 + b2 (real). 

4. Powers and products are easy in polar form z = re ie . Multiply r's and add e's. 

Problem Set 10.1 

Questions 1-8 are about operations on complex numbers. 

1 Add and multiply each pair of complex numbers: 

(a) 2 + i, 2 - i (b) -1+i,-I+i (c) cos e + i sin e, cos f) - i sin f) 

2 Locate these points on the complex plane. Simplify them if necessary: 

(a) 2 + i (b) (2 + i)2 (c) 1 
2+i (d) 12 + i I 

3 Find the absolute value r = Iz I of these four numbers. If f) is the angle for 6 - 8i, 
what are the angles for the other three numbers? 

(a) 6 - 8i (b) (6 - 8if (c) 1 
6-Si (d) (6 + 8i)2 
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4 If Izl = 2 and Iwl = 3 then Iz x wi ==: __ and Iz + wi < __ and Izlwl = 
__ and Iz-wl < __ 

5 Find a + i b for the numbers at angles 30°, 60°, 90°, 120° Qn the unit circle. If w is 
the number at 30° , check that w2 is at 60°. What power of w equals I? 

6 If z = r cos e + i r sin e then 1/ z has absolute value __ and angle __ . Its 
polar form is . Multiply z x 1 I z to get 1. 

7 The complex multiplication M = (a + bi)(e + di) is a 2 by 2 real multiplication 

The right side contains the real and imaginary parts of M. Test M = (1 +3i)(1-3i). 

8 A = Al + iA2 is a complex n by n matrix and b = b i + ib2 is a complex vector. 
The solution to Ax = b is Xl + i x 2. Write Ax = b as a real system of size 2n: 

Complex n by n 
Real2n by 2n [ ] [:~] = [:~]. 

Questions 9-16 are about the conjugate z = a - ib = re-i9 = z*. 

9 Write down the complex conjugate of each number by changing i to -i: 

(a) 2-i (b) (2-i)(1-i) (c) eirr / 2 (which is i) 

(d) eirr = -1 (e) ~~: (which isalso i) (f) i 103 = __ 

10 The sum z + z is always . The difference z - z is always Assume 
z =1= O. The product z x z is always . The ratio z Iz always has absolute value 

11 For a real matrix, the conjugate of Ax = AX is Ax = AX. This proves two things: A 
is another eigenvalue and x is its eigenvector. Find the eigenvalues A, A and eigen­
vectorsx,xofA=.[a b; -b a]. 

12 The eigenvalues of a real 2 by 2 matrix come from the quadratic formula: 

[
a - A b] 2 det e d _ A = A - (a + d)A + (ad - be) = 0 

gives the two eigenvalues A = [a + d ± J (a + d)2 - 4(ad - be) ] 12. 

(a) If a = b = d = 1, the eigenvalues are complex when e is __ 

(b) What are the eigenvalues when ad = be? 

(c) The two eigenvalues (plus sign and minus sign) are not always conjugates of 
each other. Why not? 
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13 In Problem 12 the eigenvalues are not real when (trace)2 = (a + df is smaller than 
__ . Show that the A'S are real when be > o. 

14 Find the eigenvalues and eigenvectors of this permutation matrix: 

o I o 0 
1 0 
o 1 

o 0 
o 0 
I 0 

has det(P4 - AI) = __ 
o 0 

15 Extend P4 above to P6 (five 1 's below the diagonal and one in the comer). Find 
det( P 6 - J..I) and the six eigenvalues in the complex plane. 

16 A real skew-symmetric matrix (AT = -A) has pure imaginary eigenvalues. First 
proof: If Ax = AX then block multiplication gives 

This block matrix is symmetric. Its eigenvalues must be __ ! So A is __ 

Questions 17-24 are aboutthe form re iiJ of the complex number r cos 8 + ir sin 8. 

17 Write these numbers in Euler's form reiB • Then square each number: 

(a) 1 + ../3i (b) cos 28 + i sin 28 (c) -7i (d) 5 - 5i. 

18 Find the absolute value and the angle for z = sin 8 + i cos 8 (careful). Locate this z 
in the complex plane. Multiply z by cos 8 + i sin 8 to get __ 

19 Draw all eight solutions of z8 = I in the complex plane. What is the rectangular 
form a + ib ofthe root z = w = exp(-2ni/8)? 

20 Locate the cube roots of 1 in the complex plane. Locate the cube roots of -I. To­
gether these are the sixth roots of __ 

" 

21 By comparing e3iB = cos 38 + i sin 38 with (e iB )3 = (cos 8 + i sin 8)3, find the 
"triple angle" formulas for cos 38 and sin 38 in terms of cos 8 and sin 8. 

22 Suppose the conjugate z is equal to the reciprocal 1/ z. What are all possible z's? 

23 (a) Why do ei and i e both have absolute value I? 

(b) In the complex plane put stars near the points ei and i e . 

(c) The number i e could be (e iTC/2y or (e 5iTC/ 2y. Are those equal? 

24 Draw the paths of these numbers from t = 0 to t = 2n in the complex plane: 

(a) eit 
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10.2 Hermitian and Unitary Matrices 

The main message of this section can be presented in one sentence: When you transpose 
a complex vector z or matrix A, take the complex conjugate too. Don't stop at ZT or AT. 
Reverse the signs of all imaginary parts. From a column vector with Z j = a j + i b j , 

the good row vector is the conjugate transpose with components a j - i b j : 

Conjugate transpose :zT = [ZI ... zn] = [al - ib1 ••• an - ibn]. (1) 

Here is one reason to go to z. The length squared of a real vector is xf + ... + x~. The 
length squared of a complex vector is not zf + ... + z~. With that wrong definition, the 
length of (1, i) would be 12 + i 2 = 0. A nonzero vector would have zero length-not 
good. Other vectors would have complex lengths. Instead of (a + bi)2 we want a2 + b2, 
the absolute value squared. This is (a + bi) times (a - bi). 

For each component we want Zj times Zj, which is IZj 12 = a] +bJ. That comes when 
the components of z multiply the components of z: 

[
ZI] Length - - 2 2.. - T 2 

d [ZI ... Zn] : = IZll + ... + IZnl· This IS Z Z = Ilzll . square . 
Zn 

(2) 

Now the squared length of (1, i) is 12 + Ii 12 = 2. The length is .Ji. The squared length of 
(1 + i, 1 - i) is 4. The only vectors with zero length are zero vectors. 

Before going further we replace two symbols by one symbol. Instead of a bar for the 
conjugate and T for the transpose, we just use a superscript H. Thus ZT = zH. This is 
"z Hermitian," the conjugate transpose of z. The new word is pronounced "Hermeeshan." 
The new symbol applies also to matrices: The conjugate transpose of a matrix A is AH. 

Another popular notation is A *. The MATLAB transpose command ' automatically 
takes complex conjugates (A' is AH). 

The vector ZH is ZT. The matrix AH is AT, the conjugate transpose of A: 

A H = "A Hermitian" If A = [I i.] then AH = [ ~ 0] ° 1 + l -l 1 - i 

Complex Inner Products 

For real vectors, the length squared is x T x-the inner product of x with itself. For 
complex vectors, the length squared is ZH Z . It will be very desirable if ZH Z is the inner 
product of z with itself. To make that happen, the complex inner product should use the 
conjugate transpose (not just the transpose). The inner product sees no change when the 
vectors are real, but there is a definite effect from choosing u T, when u is complex: 
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DEFINITION The inner product ofreaLorcolllplexveCfPtsuMdp isti1'i,v: 

. "[Pl]" , H '. ,'-' " '. -,,' ,',', , '..' -' ",. -
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, " l)it·, . ' , 
, ' , 

(3) 

With complex vectors, uHv is different from vHu. The order of the vectors is now impor­
tant. In fact vHu = lhul + ... + vnun is the complex conjugate of uHv. We have to put 
up with a few inconveniences for the greater good. 

Example 1 The inner product of u = [~] with v = [~] is [1 - i ] [ ~] = O. 

Example 1 is surprising. Those vectors (1, i) and (i, 1) don't look perpendicular. But they 
are. A zero inner product still means that the (complex) vectors are orthogonal. Similarly 
the vector (1, i) is orthogonal to the vector (1, -i). Their inner product is 1 - 1 = O. We 
are correctly getting zero for the inner product-where we would be incorrectly getting 
zero for the length of (1, i) if we forgot to take the conjugate. 

Note We have chosen to conjugate the first vector u. Some authors choose the second 
vector v. Their complex inner product would be uTv. It is a free choice, as long as we 
stick to it. We wanted to use the single symbol H in the next formula too: 

The inner product of Au with v equals the inner product of u with A Hv: 

A H = "adjoint" of A (4) 

The conjugate of Au is Au. Transposing it gives uT AT as usual. This is uH AH. Everything 
that should work, does work. The rule for H comes from the rule for T. That applies to 
products of matrices: 

\ 

Th~,~(inJug4t~ftt(j/iJ,~pii*~;'()tzlBi$ (A B)H = B H A H . 

We constantly use the fact that (a - ib)(c - id) is the conjugate of (a + ib)(c + id). 

Hermitian Matrices 

Among real matrices, the symmetric matrices form the most important special class: A = 
AT. They have real eigenvalues and a full set of orthogonal eigenvectors. The diagonalizing 
matrix S is an orthogonal matrix Q. Every symmetric matrix can be written as A = 
QAQ-I and also as A = QAQT (because Q-I = QT). All this follows from aij = aji, 

when A is real. 
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Among complex matrices, the special class contains the Hermitian matrices: 
A = AH. The condition on the entries is aU = aji. In this case we say that "A is 
Hermitian." Every real symmetric matrix is Hermitian, because taking its conjugate has no 
effect. The next matrix is also Hermitian, A = A H : 

[
2 3 -s3i ] 

Example 2 A = 3 + 3i 
The main diagonal is real since aii = aii. 
Across it are conjugates 3 + 3i and 3 - 3i. 

This example will illustrate the three crucial properties of all Hermitian matrices. 

Quick proof: zHAz is certainly 1 by 1. Take its conjugate transpose: 

(ZH Az)H = ZH AH(ZH)H which is zH Az again. 

This used A = A H. SO the number zH Az equals its conjugate and must be real. Here is 
that "energy" zH Az in our example: 

= 2Z1Z 1 + 5Z2Z2 + (3 - 3i)ZlZ2 + (3 + 3i)ZlZ2. 
diagonal off-diagonal 

The terms 21z112 and 51z212 from the diagonal are both real. The off-diagonal terms are 
conjugates of each other-so their sum is real. (The imaginary parts cancel when we add.) 
The whole expression zH Az is real, and this will make A real. 

Proof Suppose Az = Az. Multiply both sides by ZH to get zH Az = AzHz. On the left 
side, ZH Az is real. On the right side, ZH z is the length squared, real and positive. So the 
ratio A = zH Az / zHz is a real number. Q.E.D. 

The example above has eigenvalues A = 8 and A = -1, real because A = A H : 

2-A 
3 + 3i 

\ 

= A2 - 7A + 10 - 18 = (A - 8)(A + 1) . 

. The .. ~igenvect()1JS'~J!.fJ$lermitj4ii· .. m(ttfi~.·4t~\.·(jrtb()"gQ,j~~" (vi~~~,tli~M.·:¢()l1"~spbijd.··.td 
gi.ffi. e .. reIit~igei1v~ries) ... ···• If Az = Az and Ay = f3 y then yHz = O. 

,,'--.'" '. ',,,' - -,.-,'-', 

Proof Multiply Az = AZ on the left by yH. Multiply yH AH = f3 yH on the right by z: 

(5) 
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The left sides are equal because A = A H. Therefore the right sides are equal. Since f3 is 
different from A, the other factor yHz must be zero. The eigenvectors are orthogonal, as in 
our example with A = 8 and f3 = -1: 

[ 
-6 

(A - 81)z = 3 + 3i and 

(A + 1)y = [313i and 

Take the inner product of those eigenvectors y and z: 

Orthogonal eigenvectors 

These eigenvectors have squared length 12 + 12 + 12 = 3. After division by ,J3 they are 
unit vectors. They were orthogonal, now they are orthonormal. They go into the columns 
of the eigenvector matrix S, which diagonalizes A. 

When A is real and symmetric, S is Q-an orthogonal matrix. Now A is complex and 
Hermitian. Its eigenvectors are complex and orthonormal. The eigenvector matrix S is like 
Q, but complex. We now assign a new name "unitary" and a new letter U to a complex 
orthogonal matrix. 

Unitary Matrices 

A unitary matrix U is a (complex) square matrix that has orthonormal columns. 
U is the complex equivalent of Q. The eigenvectors of A give a perfect example: 

Unitary matrix 1 - i] 
-1 

This U is also a Hermitian matrix. I didn't expect that! The example is almost too perfect. 
We will see that the eigenvalues of this U must be I and -1. 

The matrix test for re'al orthonormal columns was Q T Q = I. When Q T multiplies Q, 
the zero inner products appear off the diagonal. In the complex case, Q becomes U. The 
columns show themselves as orthonormal when U H multiplies U. The inner products of 
the columns are again 1 and O. They fill up UHU = I: 

Suppose U (with orthonormal columns) multiplies any z. The vector length stays the 
same, because ZHUHU z = ZH Z• If z is an eigenvector of U we learn something more: 
The eigenvalues o/unitary (and orthogonal) matrices all have absolute value IAI = 1. 
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Our 2 by 2 example is both Hermitian (U = U H) and unitary (U-1 = U H ). That 
means real eigenvalues (). = A), and it means IAI = 1. A real number with absolute value 
1 has only two possibilities: The eigenvalues are 1 or -1. 

Since the trace is zero for our U, one eigenvalue is A = 1 and the other is A = -1. 

Example 3 The 3 by 3 Fourier matrix is in Figure 10.3. Is it Hermitian? Is it uni­
tary? F3 is certainly symmetric. It equals its transpose. But it doesn't equal its conjugate 
transpose-it is not Hermitian. If you change i to -i, you get a different matrix. 

>-------.1 
Fourier 

matrix 

1 

Figure 10.3: The cube roots of 1 go into the Fourier matrix F = P3. 

1 

l 
Is F unitary? Yes. The squared length of every column is ~(1 + 1 + 1) (unit vector). 

The first column is orthogonal to the second column because 1 + e 27ri / 3 + e 47ri / 3 = o. 
This is the sum of the three numbers marked in Figure 10.3. 

Notice the symmetry of the figure. If you rotate it by 120°, the three points are in the 
same position. Therefore their sum S also stays in the same position! The only possible 
sum in the same position after 120° rotation is S = o. 

Is column 2 of P orthogonal to column 3? Their dot product looks like 

!(1 +e
67ri

/
3 + e

67ri
/
3

) = !(1 + 1 + 1). 

This is not zero. The answer is wrong because we forgot to take complex conjugates. The 
complex inner product uses H not T: 

(column 2)H(column 3) = ~(1 . 1 + e-27ri/3e47ri/3 + e-47ri/3e27ri/3) 

= ~(1 + e 27ri
/
3 + e-

27ri
/
3

) = o. 

So we do have orthogonality. Conclusion: F is a unitary matrix. 

The next section will study the n by n Fourier matrices. Among all complex unitary 
matrices, these are the most important. When we mUltiply a vector by F, we are comput­
ing its Discrete Fourier Transform. When we multiply by F- 1

, we are computing the 
inverse transform. The special property of unitary matrices is that F-1 = pH. The inverse 
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transform only differs by changing i to -i: 

Change i to -i 1 [1 
F-

1 = FH =,J3 ~ 
1 

e-2rri / 3 

e-4rri /3 

Everyone who works with F recognizes its value. The last section of the book will bring 
together Fourier analysis and complex numbers and linear algebra. 

This section ends with a table to translate between real and complex-for vectors and 
for matrices: 

Real versus Complex 

Rn: vectors with n real components ~ en: vectors with n complex components 

length: IIxll2 = xf + ... + x~ ~ length: IIzf = IZ112 + ... + IZnl2 
transpose: (AT)ij = A ji ~ conjugate transpose: (AH)ij = A ji 

product rule: (AB)T = BT AT ~ product rule: (AB)H = BH AH 

dot product: x T y = XIYI + ... + XnYn ~ inner product: uHv = U I VI + ... + Un Vn 

reason for AT: (Ax)T y = X T(AT y) ~ reason for AH: (AU)HV = uH(AHV) 

orthogonality: x T y = 0 ~ orthogonality: uHv = 0 

symmetric matrices: A = AT ~ Hermitian matrices: A = AH 

A = QAQ-l = QAQT(real A) ~ A = UAU-1 = UAUH (real A) 

skew-symmetric matrices: KT = - K ~ skew-Hermitian matrices KH = - K 

orthogonal matrices: QT = Q-l ~ unitary matrices: UH = U-1 

orthonormal columns: Q T Q = I ~ orthonormal columns: UHU = I 

(QX)T(Qy) = X T Y and II Qxll = Ilxll ~ (UX)H(Uy) = xHy and IIUzll = Ilzll 

The columns and also the eigenvectors of Q and U are orthonormal. Every IA I = 1. 

Problem Set 10.2 

1 Find the lengths of u = (1 + i, 1 - i, 1 + 2i) and v = (i, i, i). Also find uHv and 
vHu. 

2 Compute AHA and AAH. Those are both __ matrices: 

A=[~ : ~l 
3 Solve Az = 0 to find a vector in the nullspace of A in Problem 2. Show that z is 

orthogonal to the columns of AH. Show that z is not orthogonal to the columns of 
AT. The good row space is no longer C (AT). Now it is C (AH). 
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4 Problem 3 indicates that the four fundamental subspaces are C(A) and N(A) and 
__ and . Their dimensions are still rand n - rand rand m - r. They are 
still orthogonal subspaces. The symbol H takes the place ofT. 

5 (a) Prove that A H A is always a Hermitian matrix. 

(b) If Az = 0 then AH Az = O. If AH Az = 0, multiply by zH to prove that 
Az = O. The nullspaces of A and AHA are . Therefore AHA is an 
invertible Hermitian matrix when the nullspace of A contains only z = 0. 

6 True or false (give a reason if true or a counterexample if false): 

(a) If A is a real matrix then A + il is invertible. 

(b) If A is a Hermitian matrix then A + i 1 is invertible. 

(c) If U is a unitary matrix then A + if is invertible. 

7 When you mUltiply a Hermitian matrix by a real number c, is cA still Hermitian? 
Show that iA is skew-Hermitian when A is Hermitian. The 3 by 3 Hermitian matrices 
are a subspace provided the "scalars" are real numbers. 

8 Which classes of matrices does P belong to: invertible, Hermitian, unitary? 

P= ° ° i . [
0 i 0] 
i ° ° 

Compute P 2, P 3, and P 100. What are the eigenvalues of P? 

9 Find the unit eigenvectors of P in Problem 8, and put them into the columns of a 
unitary matrix F. What property of P makes these eigenvectors orthogonal? 

10 Write down the 3 by 3 circulant matrix C = 21 + SP. It has the same eigenvectors 
as P in Problem 8. Find its eigenvalues. 

11 If U and V are unitary matrices, show that U-1 is unitary and also U V is unitary. 
Start from UHU = 1 and VHV = I. 

12 How do you know that the determinant of every Hermitian matrix is real? 

13 The matrix AHA is not only Hermitian but also positive definite, when the columns 
of A are independent. Proof: zH A H Az is positive if z is nonzero because __ 

14 Diagonalize this Hermitian matrix to reach A = UAUH
: 

1 - i] 
1 . 
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15 Diagonalize this skew-Hermitian matrix to reach K = U AUH • All A'S are __ 

K = [I ~ i -\+ i l 
16 Diagonalize this orthogonal matrix to reach Q = U AUH

• Now all A'S are __ 

17 

18 

19 

Q = [C?S (J - sin (J] . 
sme cos (J 

Diagonalize this unitary matrix V to reach V = U AUH • Again all A'S are __ 

I [ 1 
V=,J3 I+i 

1 - i] 
-I . 

If VI, ... ,Vn is an orthonormal basis for en, the matrix with those columns is a 
__ matrix. Show that any vector Z equals (VrZ)Vl + ... + (v~z)vn. 
The functions e-ix and eix are orthogonal on the interval 0 < x < 2n because their 
. d· r2:n: 0 mner pro uct IS Jo = . 

20 The vectors v = (1, i, 1), w = (i, 1, 0) and Z = __ are an orthogonal basis for 

21 If A = R + iSis a Hermitian matrix, are its real and imaginary parts symmetric? 

22 The (complex) dimension of en is __ . Find a non-real basis for en. 

23 Describe all 1 by 1 and 2 by 2 Hermitian matrices and unitary matrices. 

24 How are the eigenvalues of A H related to the eigenvalues of the square complex 
matrix A? 

25 If uHu = 1 show that J - 2uuH is Hermitian and also unitary. The rank-one matrix 
uuH is the projection onto what line in en? 

26 If A + iB is a unitary matrix (A and B are real) show that Q = [~-!] is an 
orthogonal matrix. , 

27 If A + iB is Hermitian (A and B are real) show that [~ -!] is symmetric. 

28 Prove that the inverse of a Hermitian matrix is also Hermitian (transpose A-I A = J). 

29 Diagonalize this matrix by constructing its eigenvalue matrix A and its eigenvector 
matrix S: 

A=[l!i l~i]=AH. 
30 A matrix with orthonormal eigenvectors has the form A = U A U-1 = U AU H. 

Prove that AAH = AHA. These are exactly the normal matrices. Examples are 
Hermitian, skew-Hermitian, and unitary matrices. Construct a 2 by 2 normal matrix 
by choosing complex eigenvalues in A. 
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10.3 The Fast Fourier Transform 

Many applications of linear algebra take time to develop. It is not easy to explain them 
in an hour. The teacher and the author must choose between completing the theory and 
adding new applications. Often the theory wins, but this section is an exception. It explains 
the most valuable numerical algorithm in the last century. 

We want to multiply quickly by F and F-1, the Fourier matrix and its inverse. This 
is achieved by the Fast Fourier Transform. An ordinary product F c uses n2 multiplications 
(F has n2 entries). The FFT needs only n times t log2 n. We will see how. 

The FFT has revolutionized signal processing. Whole industries are speeded up by this 
one idea. Electrical engineers are the first to know the difference-they take your Fourier 
transform as they meet you (if you are a function). Fourier's idea is to represent f as a 
sum of harmonics ckeikx . The function is seen infrequency space through the coefficients 
Cb instead of physical space through its values f(x). The passage backward and forward 
between c's and f's is by the Fourier transform. Fast passage is by the FFT. 

Roots of Unity and the Fourier Matrix 

Quadratic equations have two roots (or one repeated root). Equations of degree n have n 
roots (counting repetitions). This is the Fundamental Theorem of Algebra, and to make it 
true we must allow complex roots. This section is about the very special equation zn = 1. 
The solutions z are the "nth roots of unity." They are n evenly spaced points around the 
unit circle in the complex plane. 

Figure 10.4 shows the eight solutions to z8 = 1. Their spacing is k(3600) = 45°. The 

first root is at 45° or () = 2rr 18 radians. It is the complex number w = ei8 = e i21C/ 8 • 

We call this number W8 to emphasize that it is an 8th root. You could write it in terms of 

cos 2: and sin 2: ' but don't do it. The seven other 8th roots are w2 , w3 , ••. , w8 , going 
around the circle. Powers of ware best in polar form, because we work only with the 

21C 41C 16n 2 
angles 8' 8"" '-8- = rr. 

w2 = i 

'j 2rr 2rr w = e27rl 8 = cos - + i sin-
8 8 

4 1 w8 = 1 w = _--.-____ -+----''---'0--_..-___ ... Real axis 

2rr . 21r 
w7 = w = cos - - ism-

8 8 

w6 =-i 

Figure 10.4: The eight solutions to z8 = 1 are 1, w, w2 , .•. , w7 with w = (1 + i)I,.fl. 
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The fourth roots of 1 are also in the figure. They are i, -1, -i, 1. The angle is now 
2n / 4 or 90°. The first root W4 = e27Ci/4 is nothing but i. Even the square roots of 1 
are seen, with W2 = ei27C/2 = -1. Do not despise those square roots 1 and -1. The 
idea behind the FFT is to go from an 8 by 8 Fourier matrix (containing powers of ws) 
to the 4 by 4 matrix below (with powers of W4 = i). The same idea goes from 4 to 2. 
By exploiting the connections of Fs down to F4 and up to Fl6 (and beyond), the FFT 
makes multiplication by FI024 very quick. 

We describe the Fourier matrix, first for n = 4. Its rows contain powers of 1 and wand 
w2 and w3 • These are the fourth roots of 1, and their powers come in a special order. 

Fourier 
1 1 1 1 1 1 1 1 
1 w2 w3 1 i '2 '3 

matrix F= 
w 1 1 

1 w2 w4 w6 1 i 2 '4 '6 
n=4 

1 1 

1 w3 w6 w9 1 '3 '6 '9 l 1 l 

The matrix is symmetric (F = F T ). It is not Hermitian. Its main diagonal is not real. But 
~F is a unitary matrix, which means that (~FH)(~F) = I: 

The inverse changes from w = i to w = -i. That takes us from F to F. When the Fast 
Fourier Transform gives a quick way to multiply by F, it does the same for F- 1 • 

The unitary matrix is U = F /,Jii. We avoid that ,Jii and just put ~ outside F-l. The 
main point is to multiply F times the Fourier coefficients Co, Cl , C2, C3: 

4-point Yo 1 1 1 1 Co 

YI I W w2 w3 
Cl Fourier = Fe = 

series Y2 1 w2 w4 w6 C2 
Y3 1 w3 w6 w9 C3 

(1) 

The input is four complex coefficients Co, Cl, C2, C3. The output is four function values 
Yo, Y 1, Y2, Y3· The first output Yo = Co + Cl + C2 + C3 is the value of the Fourier series at 
x = O. The second output is the value of that series L Ckei kx at x = 2n / 4: 

The third and fourth outputs Y2 and Y3 are the values of L Ckeikx at x = 4n / 4 and 
x = 6n / 4. These are finite Fourier series! They contain n = 4 terms and they are 
evaluated at n = 4 points. Those points x = 0, 2n / 4, 4n /4, 6n /4 are equally spaced. 

The next point would be x = 8n /4 which is 2n. Then the series is back to Yo, because 
e27Ci is the same as eO = 1. Everything cycles around with period 4. In this world 2 + 2 is 
o because (w2)(w2) = WO = 1. We will follow the convention that j and k gofrom 0 to 
n - I (instead of 1 to n). The "zeroth row" and "zeroth column" of F contain all ones. 
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The n by n Fourier matrix contains powers of w = e2rci /n: 

1 1 1 Co Yo 
1 W w2 wn- 1 

Cl Yl 
Fn c = 1 w2 w4 w2(n-l) 

C2 - Y2 =y. (2) 

1 wn- 1 w2(n-l) w (n-l)2 Cn-l Yn-l 

Fn is symmetric but not Hermitian. Its columns are orthogonal, and Fn F n = n I. Then 
Fn-

1 is F nln. The inverse contains powers of Wn = e-2rci/n. Look atthe pattern in F: 

~~~~fl,~;;i~~~~Ktf,(~~~~i;~i~s!~~g:i~~~"~~~~f:d~~>~~l~~i~e~4~~G~fd~~{1(t~i::7j:_~~~~' 
When we multiply c by Fn, we sum the series at n points. When we multiply y by Fn-

1 , we 
find the coefficients c from the function values y. In MATLAB that command is c = fft(y). 
The matrix F passes from "frequency space" to "physical space." 

Important note. Many authors prefer to work with w = e-2rci/N , which is the complex 
conjugate of our W. (They often use the Greek omega, and I will do that to keep the two 
options separate.) With this choice, their DFT matrix contains powers of w not W. It is 
conj (F) = complex conjugate of our F. This takes us to frequency space. 

F is a completely reasonable choice! MATLAB uses w = e-2rci / N. The DFT matrix 
fft(eye(N» contains powers of this number w = W. The Fourier matrix with w's recon­
structs y from C. The matrix F with w's computes Fourier coefficients as fft(y). 

Also important. When a function f(x) has period 2lC, and we change x to ei8 , 

the function is defined around the unit circle (where z = ei8 ). Then the Discrete 
Fourier Transform from y to c is matching 11 values of this f(z) by a polynomial 
p(z) = Co + CIZ + ... + Cn_lZn- 1• 

The Fourier matrix is the Vandermonde matrix for interpolation at those 11 points. 

One Step of the Fast Fourier Transform 

We want to multiply F times c as quickly as possible. Normally a matrix times a vector 
takes 112 separate multiplications-the matrix has n2 entries. You might think it is impos­
sible to do better. (If the matrix has zero entries then multiplications can be skipped. But 
the Fourier matrix has no zeros!) By using the special pattern wik for its entries, F can be 
factored in a way that produces many zeros. This is the FFT. 

The key idea is to connect Fn with the half-size Fourier matrix Fn/2. Assume that n 
is a power of 2 (say 11 = 210 = 1024). We will connect F1024 to FS12-or rather to two 
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copies of FS12 . When n = 4, the key is in the relation between these matrices: 

1 I I I I I 
1 i '2 i 3 F2 I i 2 

F4 = 
1 

and 
1 '2 i4 i 6 F2 I I 1 

I i 3 ·6 
1 '9 1 I '2 1 

On the left is F4 , with no zeros. On the right is a matrix that is half zero. The work is cut 
in half. But wait, those matrices are not the same. We need two sparse and simple matrices 
to complete the FFT factorization: 

Factors 
forFFT 

1 

1 

1 
1 

-1 
I 

1 
i 1 

(3) 
1 

-i 1 

The last matrix is a permutation. It puts the even c's (co and C2) ahead of the odd c's (Cl 

and C3)' The middle matrix performs half-size transforms F2 and F2 on the evens and 
odds. The matrix at the left combines the two half-size outputs-in a way that produces 
the correct full-size output y = F4e. 

The same idea applies when n = 1024 and m = ~n = 512. The number w is 
e21l'i/I024. It is at the angle e = 2rr /1024 on the unit circle. The Fourier matrix FI 024 

is full of powers of w. The first stage of the FFT is the great factorization discovered by 
Cooley and Tukey (and foreshadowed in 1805 by Gauss): 

- -

')"'[/SI2 . D512] :· .. r~51~.· •. ;:··.·· •• ·."'·"'.·.·"" •• '.·'.] •• · [ even-odd '] (4) 
1512 -DSI2 Jt};.lfs~~<; permutation ' •. 

'"'."" 

1512 is the identity matrix. DS12 is the diagonal matrix with entries (1, w, ... , WSll ). The 
two copies of F512 are what we expected. Don't forget that they use the 512th root of unity 
(which is nothing but w2 !!) The permutation matrix separates the incoming vector e into 
its even and odd parts e' = (co, C2 •. .. , C1022) and e" = (Cl, C3,·· . , CI023)' 

Here are the algebra formulas which say the same thing as the factorization of F1024 : 

~~},,~r~~r~t~~~,~1:~1r~~~"~f:;=~t~-~, 
·:~sl.)}(if..;·!J)w{:11·~rJ:.cl:~l··.Jj).·Yct: .. . .' 

, : ~:'-;:::'~';:--:::':":\:;';:,:.::':.'::: ,.,; ..... ;«.::. 

',''''. '-\:,"-:, 
:<-:.:,' ,-I:\~, ';:</",'~'~' 
..' ..,,.." . , ".' \, I;'~",:. 

j = 0, ... ,m-l 

-' j" Yj+m - Yj - wnYj' j = O, ... ,m-1. 

'SP~itC·~~~'C:6)~~,..~!,,~,;~*~~~.Ji~m~~.~~iri~~:.YI~q~/(,:··~d;.r¢~Qn§.ti;\!Yf.~.;. 

Those formulas come from separating even C2k from odd C2k+ 1 : 

n-l m-l m-l 

Yj = L wjkCk = L w2jkc2k + L W
j
(2k+l)C2k+l with m = ~n. (6) 

000 
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The even c's go into c' = (co, C2,"') and the odd c's go into c" = (CI' C3, •. . ). Then 
come the transforms Fmc' and Fmc". The key is w; = Wm. This gives w~jk = wink. 

Rewrite (7) 

For j > m, the minus sign in (5) comes from factoring out (wn)m = -1. 
MATLAB easily separates even c's from odd c's and multiplies by wI,. We use conj( F) 

or equivalently MATLAB's inverse transform ifft, because fft is based on cv = w = e-2ni / n . 

Problem 17 shows that F and conj(F) are linked by permuting rows. 

FFT step 
from n to nl2 
inMATLAB 

y' = ifft (c(O : 2 : n - 2)) * n12; 
y" = ifft (c(l : 2 : n - 1)) * n12; 
d = w."(O : nl2 - 1)'; 
Y = [y' + d. * y"; y' - d. * y"J; 

The flow graph shows c' and c" going through the half-size F2. Those steps are called 
"butterflies," from their shape. Then the outputs y' and y" are combined (multiplying y" 
by 1, i and also by -1, -i) to produce y = F4c. 

This reduction from Fn to two Fm's almost cuts the work in half-you see the zeros in 
the matrix factorization. That reduction is good but not great. The full idea of the FFT is 
much more powerful. It saves much more than half the time. 

00 Co ~------------~~--------------~ Yo 00 

c' y' 1 

10 C2 ~------------~~------~------~ YI 01 

01 C1 ~------------~~------~------~ Y2 10 

e" 

11 C3 ~--------------= ...... -------------:--.. Y3 
1 

11 

The Full FFT by Recursion 

If you have read this far, you have probably guessed what comes next. We reduced Fn to 
Fn/2 . Keep going to Fn/4 . The matrices FSl2 lead to F2S6 (in four copies). Then 256 leads 
to 128. That is recursion. It is a basic principle of many fast algorithms, and here is the 
second stage with four copies of F = F2S6 and D = D2S6: 

I D F pick o 4 8 ... , , , 
FSl2 I -D F pick 2,6,10,,, . 

FS12 I D F pick 1,5,9"" 
I -D F pick 3,7,11" .. 
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We will count the individual multiplications, to see how much is saved. Before the FFT 
was invented, the count was the usual n2 = (1024)2. This is about a million multiplica­
tions. I am not saying that they take a long time. The cost becomes large when we have 
many, many transforms to do-which is typical. Then the saving by the FFT is also large: 

Thejinal countfor size n = 2l is reducedfrom n2 to !n.e. 

The number 1024 is 210 , so.e = 10. The original count of (1024) 2 is reduced to 
(5)(1024). The saving is a factor of 200. A million is reduced to five thousand. That is why 
the FFT has revolutionized signal processing. 

Here is the reasoning behind !n.e. There are.e levels, going from n = 2£ down to 
n = 1. Each level has n /2 multiplications from the diagonal D's, to reassemble the half­
size outputs from the lower level. This yields the final count !n.e, which is !n log2 n. 

One last note about this remarkable algorithm. There is an amazing rule for the order 
that the c's enter the FFT, after all the even-odd permutations. Write the numbers ° to 
n - 1 in binary (base 2). Reverse the order of their digits. The complete picture shows the 
bit-reversed order at the start, the .e = log2 n steps of the recursion, and the final output 
Yo, ... , Yn-l which is Fn times c. 

The book ends with that very fundamental idea, a matrix mUltiplying a vector. 

Thank you for studying linear algebra. I hope you enjoyed it, and I very much hope you 
will use it. It was a pleasure to write about this tremendously useful subject. 

Problem Set 10.3 

1 Multiply the three matrices in equation (3) and compare with F. In which six entries 
do you need to know that i 2 = -I? 

2 Invert the three factors in equation (3) to find a fast factorization of F- 1• 

3 F is symmetric. So transpose equation (3) to find a new Fast Fourier Transform! 

4 All entries in the factorization of F6 involve powers of W6 = sixth root of 1: 

Write down these matrices with 1, W6, w~ in D and W3 = w~ in F3 • Multiply! 

5 Ifv = (1,O,O,O)andw = (1, I, 1, 1),showthatFv = w and Fw = 4v. Therefore 
F-1w = v and F-1v = --

6 What is F2 and what is F4 for the 4 by 4 Fourier matrix? 

7 Put the vector c = (1, 0, 1, 0) through the three steps of the FFT to find y = F c. Do 
the same forc = (0,1,0, I). 

Jaosn
高亮

Jaosn
高亮
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8 Compute y = Fsc by the three FFT steps for c = (1,0,1,0,1,0,1,0). Repeat the 
computation for c = (0,1,0,1,0,1,0,1). 

9 If w = e21Ci/64 then w2 and rw are among the __ and __ roots of 1. 

10 (a) Draw all the sixth roots of 1 on the unit circle. Prove they add to zero. 

(b) What are the three cube roots of I? Do they also add to zero? 

11 The columns of the Fourier matrix F are the eigenvectors of the cyclic permutation 
P. Multiply P F to find the eigenvalues Al to A4: 

° 1 ° ° ° ° 1 ° 000 1 

1 ° ° ° 

1 1 1 1 
1 i i 2 i 3 

1 i2 i4 i6 

1 i 3 i 6 i 9 

1 1 1 1 
1 i i 2 i 3 

1 i 2 i4 i 6 

1 i 3 i 6 i 9 

This is P F = FA or P = FAF- I . The eigenvector matrix (usually S) is F. 

12 The equation det(P - AI) = 0 is A 4 = 1. This shows again that the eigenvalue 
matrix A is . Which permutation P has eigenvalues = cube roots of I? 

13 (a) Two eigenvectors of Care (1, 1, 1, 1) and (1, i, i 2 , i 3 ). Find the eigenvalues. 

Co CI C2 C3 1 1 1 1 
C3 Co CI C2 1 1 

and C 
i i 

1 = el 
1 '2 = e2 j2 C2 C3 Co CI 1 

CI C2 C3 Co 1 1 '3 1 i 3 

(b) P = FAF- I immediately gives p2 = FA 2 F- I and p 3 = FA 3 F- I . Then 
C = Col + clP + C2p2 + C3 p3 = F(col + CIA + C2A2 + C3A3)F-I = 
FEF- I • That matrix E in parentheses is diagonal. It contains the of C. 

14 Find the eigenvalues of the "periodic" -1,2, -1 matrix from E = 21 - A - A 3 , 

with the eigenvalues of Pin A. The -1 's in the corners make this matrix periodic: 

2 -1 0 -1 

C= 
-1 2 -1 ° has Co = 2, CI = -1, C2 = 0, C3 = -1. 

0 -1 2 -1 
-1 ° -1 2 

15 Fast convolution. To multiply C times a vector x, we can multiply F (E (F- I X )) 

instead. The direct way uses n2 separate multiplications. Knowing E and F, the 
second way uses only n log2 n + n multiplications. How many of those come from 
E, how many from F, and how many from F-I? 

16 Why is row j of F the same as row N - i of F (numbered ° to N - I)? 

Jaosn
高亮

Jaosn
高亮

Jaosn
高亮



Solutions to Selected Exercises 

Problem Set 1.1, page 8 

1 The combinations give (a) a line in R3 (b) a plane in R3 

4 3v + w = (7,5) and cv + d w = (2c + d, c + 2d). 

6 The components of every cv + d w add to zero. c = 3 and d = 9 give (3,3, -6). 

9 The fourth comer can be (4,4) or (4,0) or (-2,2). 

11 Four more comers (1,1,0), (1,0,1), (0,1,1), (1,1,1). The center point is (~,~, ~). 

Centers of faces are (~, ~, 0), (~, ~, 1) and (0, ~, ~), (1, ~, ~) and (~, 0, ~), (~, 1, ~). 

12 A four-dimensional cube has 24 = 16 comers and 2 • 4 = 8 three-dimensional faces 
and 24 two-dimensional faces and 32 edges in Worked Example 2.4 A. 

13 Sum = zero vector. Sum = -2:00 vector = 8:00 vector. 2:00 is 30° from horizontal 
= (cos~, sin ~) = (../3/2, 1/2). 

16 All combinations with c + d = 1 are on the line that passes through v and w. 
The point V = -v + 2w is on that line but it is beyond w. 

17 All vectors cv + cw are on the line passing through (0,0) and u = ~v + ~w. That 
line continues out beyond v + wand back beyond (0,0). With c > 0, half of this line 
is removed, leaving a ray that starts at (0,0). 

20 (a) ~u + ~v + ~w is the center of the triangle between u, v and w; ~u + ~w lies 
between u and w. (b) To fill the triangle keep c > 0, d > 0, e > 0, and c + d + e = 1. 

22 The vector ~(u + v + w) is outside the pyramid because c + d + e = ~ + ~ + ~ > 1. 

25 (a) For a line, choose u = v = w = any nonzero vector (b) For a plane, choose 
u and v in different directions. A combination like w = u + v is in the same plane. 

Problem Set 1.2, page 19 

3 Unit vectors v/llvil = (~,~) = (.6, .8) and w/llwil = (~,~) = (.8, .6). The cosine 

of e is II~II • II~II = ~~. The vectors w, u, -w make 0°,90°, 180° angles with w. 

4 (a) V· (-v) = -1 (b) (v + w)· (v - w) = V· v + w • v - V· W - w· w = 
1 +( )-( )-1 = 0 so e = 90° (notice v·w = w·v) (c) (v-2w).(v+2w) = 
v . v - 4w • w = 1 - 4 = -3. 

516 
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6 All vectors w = (c, 2c) are perpendicular to v. All vectors (x, Y, z) with x + Y + z = 0 
lie on a plane. All vectors perpendicular to (1, 1, 1) and (I, 2, 3) lie on a line. 

9 Ifv2w21vIwi = -1 then V2W2 = -VIWI orvIwI+v2W2 = vow = 0: perpendicular! 

11 vow < 0 means angle> 90°; these w's fill half of 3-dimensional space. 

12 (1,1) perpendicular to (1,5) - c(I, 1) if 6 - 2e = 0 or e = 3; v 0 (w - cv) = 0 if 
C = vow Iv 0 v. Subtracting ev is the key to perpendicular vectors. 

15 ~(x + Y) = (2 + 8)/2 = 5; cos e = 2v'I61 v'1Ov'1O = 8110. 

17 cosa = 1/..ti, cos fJ = 0, cos y = -1/..ti. For any vector v, cos2 a +cos2 fJ +cos2 Y 
= (vf + v~ + v~)/llvIl2 = 1. 

21 2vow < 211vllllwilleads to Ilv+wl12 = v ov+2vow+w ow < Ilvf+21Ivllllwll+llwIl2. 
This is (11vll + Ilwllf. Taking square roots gives IIv + wll < Ilvll + Ilwll· 

22 vfwf + 2VI WI V2W2 + v~w~ < vfwf + vfw~ + v~wf + v~w~ is true (cancel 4 terms) 
because the difference is viw~ + v~wf - 2VI WI V2W2 which is (VI W2 - V2WI)2 > O. 

23 cosfJ = wdllwll andsinfJ = w2/11wll. Thencos(fJ-a) = cosfJ cosa+sinfJ sina = 
VI wdllvllllwil + v2wzlllvllllwil = v 0 w/llvllllwil. This is cos e because fJ - a = e. 

24 Example 6 gives IUIllVd < ~(ui + Vl) and IU211V21 < ~(u~ + Vi). The whole line 
becomes .96 < (.6)(.8) + (.8)(.6) < ~(.62 + .82) + ~(.82 + .62) = 1. True: .96 < 1. 

28 Three vectors in the plane could make angles> 90° with each other: (1,0), (-1,4), 
(-1, -4). Four vectors could not do this (360° total angle). How many can do this in 
R3 0r Rn ? 

29 Try v = (1,2, -3) and w = (-3,1,2) with cos e = ~1 and e = 120°. Write 

vow = xz + YZ + xy as ~(x + Y + Z)2 - i(x2 + y2 + Z2). If x + y + Z = 0 this 

is -i(x2 + y2 + z2) = -~llvllllwll. Then v 0 w/llvllllwil = -i. 

Problem Set 1.3, page 29 

1 2s I + 3s2 + 4s 3 = (2,5,9). The same vector b comes from S times x = (2,3,4): 

[
1 0 0][2] [(rowl)OX] [2] 1 1 0 3 = (row 2) 0 x = 5 . 
1 1 1 4 (row 2) 0 x 9 

2 The solutions are YI = 1, Y2 = 0, Y3 = 0 (right side = column 1) and YI = 1, Y2 = 3, 
Y3 = 5. That second example illustrates that the first n odd numbers add to n2. 

4 The combination Ow 1 + OW2 + OW3 always gives the zero vector, but this problem 
looks for other zero combinations (then the vectors are dependent, they lie in a plane): 
W2 = (WI + w3)/2 so one combination that gives zero is iWI - W2 + iW3' 

5 The rows of the 3 by 3 matrix in Problem 4 must also be dependent: r2 = !(ri + r3)' 
The column and row combinations that produce 0 are the same: this is unusual. 

7 All three rows are perpendicular to the solution x (the three equations rIO X = 0 and 
r 2 0 X = 0 and r 3 0 X = 0 tell us this). Then the whole plane of the rows is perpendicular 
to x (the plane is also perpendicular to all multiples ex). 
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9 The cyclic difference matrix C has a line of solutions (in 4 dimensions) to ex = 0: 

[-~ -I J -~] W] = [~] when x = m = anyeonstmtveetor. 

11 The forward differences of the squares are (t + 1)2 - t 2 = t 2 + 2t + 1 - t 2 = 2t + 1. 
Differences of the nth power are (t + l)n - t n = t n - t n + ntn- I + .... The leading 
term is the derivative ntn- I . The binomial theorem gives all the terms of (t + l)n. 

12 Centered difference matrices of even size seem to be invertible. Look at eqns. 1 and 4: 

[

01 
-1 0 
o -1 
o 0 

13 Odd size: The five centered difference equations lead to b i + b3 + bs = O. 

X2 = bi 

X3 - Xl = b2 

X4 - X2 = b3 

Xs - X3 = b4 

- X4 = bs 

Add equations 1,3,5 
The left side of the sum is zero 
The right side is b i + b3 + bs 
There cannot be a solution unless hI + b3 + bs = O. 

14 An example is (a,b) = (3,6) and (c,d) = (1,2). Theratiosa/c andb/d are equal. 
Then ad = be. Then (when you divide by bd) the ratios a/band c / d are equal! 

Problem Set 2.1, page 40 

1 The columns are; = (1,0,0) and j = (0, 1,0) and k = (0,0,1) and b = (2,3,4) = 
2; + 3j + 4k. 

2 The planes are the same: 2x = 4isx = 2,3y = 9isy = 3, and 4z = 16isz = 4. The 
solution is the same point X = x. The columns are changed; but same combination. 

4 If z = 2 then X + y = 0 and x - y = z give the point (1,-1,2). If z = 0 then 
x + y = 6 and x - y = 4 produce (5, 1,0). Halfway between those is (3,0, I). 

6 Equation 1 + equation 2 - equation 3 is now 0 = -4. Line misses plane; no solution. 

S Four planes in 4-dimensional space normally meet at a point. The solution to Ax = 
(3,3,3,2) is x = (0,0,1,2) if A has columns (1,0,0,0), (1,1,0,0), (1,1,1,0), 
(1,1,1,1). The equations are x + y + z + t = 3, y + z + t = 3, z + t = 3, t = 2. 

11 Ax equals (14,22) and (0,0) and (9,7). 

14 2x + 3y + z + 5t = 8 is Ax = b with the I by 4 matrix A = [2 3 1 5]. The 
solutions x fill a 3D "plane" in 4 dimensions. It could be called a hyperplane. 

16 900 rotation from R = ~ ~ ~], 1800 rotation from R2 = [-~ _ ~] = -I. 
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18 E = [_ i n and E = [-1 r ~] subtract the first component from the second. 

22 The dot product Ax = [1 4 5] [n = (1 by 3)(3 by 1) is zero for points (x, y, z) 

on a plane in three dimensions. The columns of A are one-dimensional vectors. 

23 A = [1 2 ; 3 4] and x = [5 -2] I and b = [1 7] '. r = b - A * x prints as zero. 

25 ones(4,4)*ones(4,1) = [4 4 4 4]';B*w=[10 10 10 10]'. 

28 The row picture shows four lines in the 2D plane. The column picture is in four­
dimensional space. No solution unless the right side is a combination of the two columns. 

29 U7, V7, W7 are all close to (.6, .4). Their components still add to 1. 

30 [:~ :~ ] [:~ ] = [:~ ] = steady state s. No change when multiplied by [:~ :~ J. 

[
8 3 4] [5 + U 5 - u + v 5 - v ] 

31 M = 1 5 9 = 5 - u - v 5 5 + u + v ; M 3 (1, I, 1) = (15, 15, 15); 
6 7 2 5+v 5+u-v 5-u 

M4 (1, I, I, 1) = (34,34,34,34) because 1 + 2 + ... + 16 = 136 which is 4(34). 

32 A is singular when its third column w is a combination c u + d v of the first columns. 
A typical column picture has b outside the plane of u, v, w. A typical row picture has 
the intersection line of two planes parallel to the third plane. Then no solution. 

33 w = (5,7) is 5u + 7v. Then Aw equals 5 times Au plus 7 times Av. 

34 [-! =~ -r J] [~~] = [~] has the solution [~~] = [~]. 
o 0 -1 2 X4 4 X4 6 

35 x = (1, ... ,1) gives Sx = sum of each row = 1 + .. ·+9 = 45 for Sudoku matrices. 
6 row orders (1,2,3), (1,3,2), (2, 1,3), (2,3,1), (3,1,2), (3,2,1) are in Section 2.7. 
The same 6 permutations of blocks of rows produce Sudoku matrices, so 64 = 1296 
orders of the 9 rows all stay Sudoku. (And also 1296 permutations of the 9 columns.) 

Problem Set 2.2, page 51 

3 Subtract -t (or add t) times equation 1. The new second equation is 3y = 3. Then 
y = 1 and x =5. If the right side changes sign, so does the solution: (x, y) = (-5, -1). 

4 Subtract e = ~ times equation 1. The new second pivot multiplying y is d - (cb/a) 
or (ad - bc)/a. Then y = (ag - cf)/(ad - bc). 

6 Singular system if b = 4, because 4x + 8y is 2 times 2x + 4y. Then g = 32 makes 
the lines become the same: infinitely many solutions like (8,0) and (0,4). 

8 If k = 3 elimination must fail: no solution. If k = -3, elimination gives 0 = 0 in 
equation 2: infinitely many solutions. If k = 0 a row exchange is needed: one solution. 

14 Subtract 2 times row 1 from row 2 to reach (d -1O)y-z = 2. Equation (3) is y-z = 3. 
If d = 10 exchange rows 2 and 3. If d = 11 the system becomes singular. 
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15 The second pivot position will contain -2 - b. If b = -2 we exchange with row 3. If 
b = -1 (singular case) the second equation is -y - z = O. A solution is (1, 1, -1). 

17 If row 1 = row 2, then row 2 is zero after the first step; exchange the zero row with row 
3 and there is no third pivot. If column 2 = column 1, then column 2 has no pivot. 

19 Row 2 becomes 3y - 4z = 5, then row 3 becomes (q + 4)z = t - 5. If q = -4 
the system is singular - no third pivot. Then if t = 5 the third equation is 0 = O. 
Choosing z = 1 the equation 3y - 4z = 5 gives y = 3 and equation 1 gives x = -9. 

20 Singular if row 3 is a combination of rows 1 and 2. From the end view, the three planes 
form a triangle. This happens if rows 1 + 2 = row 3 on the left side but not the right 
side: x + y + z = 0, x - 2y - z = 1, 2x - y = 4. No parallel planes but still no solution. 

25 a = 2 (equal columns), a = 4 (equal rows), a = 0 (zero column). 

28 A(2,:) = A(2,:) - 3 * A(l,:) will subtract 3 times row 1 from row 2. 

29 Pivots 2 and 3 can be arbitrarily large. I believe their averages are infinite! With row 
exchanges in MATLAB's lu code, the averages are much more stable (and should be 
predictable, also for randn with normal instead of uniform probability distribution). 

30 If A(5, 5) is 7 not 11, then the last pivot will be 0 not 4. 

31 Row j of U is a combination of rows 1, ... , j of A. If Ax = 0 then U x = 0 (not true 
if b replaces 0). U is the diagonal of A when A is lower triangular. 

Problem Set 2.3, page 63 

1 E21 = [-~ ~ ~], E32 = [b 
o 0 1 0 

~ ~], P = [b ~ ~] [~ b ~] = [~ b 
71 010001 10 

3 [-! ~ ~], [b ~ ~], [b 
0012010 

~ ~] M = E32E31 E21 = [-! ~ 
-2 1 10 -2 

5 Changing a33 from 7 to 11 will change the third pivot from 5 to 9. Changing a33 from 
7 to 2 will change the pivot from 5 to no pivot. 

9 M = [ b ~ ~]. After the exchange, we need E31 (not E21 ) to act on the new row 3. 
-1 1 0 

10 E13 = [00
1 

~ b]; [b ~ b]; E31E13 = [~ ~ b]. Test on the identity matrix! 
01101 101 

12 The first product is [~ ~ ~] :~:s c:~mns The second product is [b i -~] . 
3 2 1 reversed. 0 2-3 

14 E21 has -.e21 =~, E32 has -.e32 =~, E43 has -.e43 =~. Otherwise the E's match I. 

18EF=[~ ~ ~].FE=[ ~ ~ ~]'E2=[2~ ~ ~]'F3=[b ~ ~]. 
b c 1 b +ac c 1 2b 0 1 0 3c 1 
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22 (a) L a3jXj (b) a21-all (c) a21-2all (d) (E21Axh = (Axh = LaIjXj. 

25 The last equation becomes ° = 3. If the original 6 is 3, then row I + row 2 = row 3. 

27 (a) No solution if d = ° and c =1= ° (b) Many solutions if d = ° = c. No effect from a, b. 

28 A = AI = A(BC) = (AB)C = IC = C. That middle equation is crucial. 

30 EM = [~ j] then FEM = [~ ~] then EFEM = [~ ~] then EEFEM = 

[b ~] = B. So after inverting with E-1 = A and F- I = B this is M = ABAAB. 

Problem Set 2.4, page 75 

2 (a) A (column 3 of B) (b) (Row I of A) B (c) (Row 3 of A)(column 4 of B) 
(d) (Row I of C)D(column I of E). 

5 (a) A2 = [~ 2Ib] and An = [b nlbl (b) A2 = [6 6] and An = [2; 2;l 

7 (a) True (b) False (c) True (d) False. 

9 AF = [~ ~! ~] and E(AF) = (EA)F: Matrix multiplication is associative. 

11 (a) B = 41 (b) B = ° (c) B = [~ ~ b] (d) Every row of B is 1,0,0. 

1 ° ° 
15 (a) mn (use every entry of A) (b) mnp = pxpart (a) (c) n3 (n 2 dot products). 

16 (a) Use only column 20fB (b) Useonlyrow20fA (c)-(d) Use row 2 of first A. 

18 Diagonal matrix, lower triangular, symmetric, all rows equal. Zero matrix fits all four. 

19 (a) all (b) .e31 = a3I/all (c) a32 - (aa 31 )a12 (d) a22 - (aa21 )a12. 
II 11 

22 A = [_ ~ 6] has A 
2 

= -I; B C = [~ = ~ ] [~ ~] = [~ ~ l 
DE = [~ b] [_~ b].= [-b ~] = -ED. You can find more examples. 

24 (At}n = [2; 2
n 
~ 1]. (A2)n = 2n - 1 [~ ~]. (A3)n = [a; an~Ib l 

27 (a) (row 3 of A) • (column 1 of B) and (row 3 of A)· (column 2 of B) are both zero. 

(b) [~][O x xl=[~ ~ z]and[~][O 0 xl=[~ ~ ~lbothUpper. 
28 A ~imes B A[ 

wIth cuts ]. [- ]B' [-][ ]. [ ][=] 
30 In 29, c = [-~]. D = [~ j]. D -cb/a = [~ j] in the lower comer of EA. 

32 A times X = [Xl X2 X3] will be the identity matrix I = [AXI AX2 AX3]. 
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33 b = [~] gives x = 3Xl + 5X2 + 8X3 = [ ~]; A = [-~ ~ g] will have 
8 16 0 -1 1 

those Xl = (1, 1, 1), X2 = (0, 1, 1), X3 = (0,0,1) as columns of its "inverse" A-I. 

1010 20202 

[

0 1 0 1] [2 0 2 0] 
35 A = 0 1 0 1 ,A = 2 0 2 0 ' 

aba, ada 
bab,bcb 
abc,adc 
bad,bcd 

cba,cda 
dab,dcb 
cbc,cdc 
dad,dcd 

These show 
162-step 
paths in 

1 0 1 0 020 2 the graph 

Problem Set 2.5, page 89 

[0 1] [ 1 1 A-I = 1 4 and B-1 = 2 
- 0 -1 3 

0] e- I [7 -4] ~ and = -5 3' 

7 (a) In Ax = (1,0,0), equation 1 + equation 2 - equation 3 is 0 = 1 (b) Right 
sides must satisfy bi + b2 = b3 (c) Row 3 becomes a row of zeros-no third pivot. 

8 (a) The vector x = (1,1, -1) solves Ax = 0 (b) After elimination, columns 1 
and 2 end in zeros. Then so does column 3 = column 1 + 2: no third pivot. 

12 Multiplye = AB on the left by A-I and on the right bye-I. Then A-I = Be-I. 

14 B-1 = A-I D n- I 

= A-I ~: ~l subtract column 2 of A-I from column 1. 

16 [a b] [d -b] _ [ad - be 0] The inverse of each matrix is 
e d -e a - 0 ad - be . the other divided by ad - be 

18 A2 B = I can also be written as A(AB) = I. Therefore A-I is AB. 

21 Six of the sixteen 0 - 1 matrices are invertible, including all four with three 1 'so 

22 [~ 3 1 ~] -+ [6 3 1 ~] -+ [6 0 7 -~] = [I A-I]; 7 0 1 -2 1 -2 

[j 4 1 ~] -+ [6 4 1 ~] -+ [6 0 -3 -ij~] = [I A-I]. 9 0 -3 -3 1 1 

[~ 
a b 1 0 

~] -+ [~ 
a 0 1 0 -b] [I 0 0 1 -a ac -b] 

24 1 e 0 1 1 0 0 1 -e -+ 0 1 0 0 1 -e . 
0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 

27 A-I = [-~ 
0 -f] (notice the pattern); A-I = [-~ 

-1 -u 1 2 
0 -1 

31 Eliminationproducesthepivotsaanda-banda-b. A-I = 1 b [-~ ~-~]. 
a(a -) 0 -a a 

33 x = (1,1, ... ,1) has Px = Qx so (P - Q)x = O. 

34 [_~ J] and [_D1~A-I D~I] and [-~ ~J 
35 A can be invertible with diagonal zeros. B is singular because each row adds to zero. 
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38 The three Pascal matrices have P = LU = LLT and then inv(P) = inv(LT)inv(L). 
42 MM-1 = (In-UV) (In+U(lm-VU)-IV) (this is testing formula 3) 

= In-UV +U(lm- VU)-1 V -UVU(lm- VU)-1 V (keep simplifying) 
= In-UV +U(lm - VU)(lm- VU)-1 V = In (formulas 1,2,4 are similar) 

43 4 by 4 still with Til = 1 has pivots 1,1,1,1; reversing to T* = UL makes Tt4 = 1. 
44 Add the equations ex = b to find 0 = b1 + b2 + b3 + b4 . Same for Fx = b. 

Problem Set 2.6, page 102 

3 £31 = 1 and £32 = 2 (and £33 = 1): reverse steps to get Au = b from U x = c: 
1 times (x+y+z = 5)+2 times (y+2z = 2)+1 times(z = 2)givesx+3y+6z = 11. 

4 Lc = [l ~ J m = U} UX = [' i n [x] = [H x = [-H 
6 [6 1 ] [-~ 1 ] A = [6 ~ ;] = U. Then A = [~ ~ ~] U is 

o -2 1 0 0 1 0 0 -6 0 2 1 
the same as E:;l E3l U = L U. The multipliers £21, £32 = 2 fall into place in L. 

10 C = 2 leads to zero in the second pivot position: exchange rows and not singular. 
C = 1 leads to zero in the third pivot position. In this case the matrix is singular. 

12 A = [~ 1 i] = [~ ~] [~ j] = [~ ~] [~ ~] [6 i] = L D U; U is L T 

[! 1 ][6 -1 ~]=[! I ][1 -4 ][6 i -~]=LDLT. 
o -1 I 0 0 4 0 -I I 4 0 0 I 

14 [~ ~ ~ 1] = [i I : J r r r r] a#O 
b-r s-r s-r b#r 

. Need ../.. c-s t-s CIS 

d-t d#t 

15 [! ~] c = [Ii] gives c = [;]. Then [~ i] x = [;] gives x = l~]' 
Ax = b is LUx = [~ 1 j] x = [ 1 i]. Forward to [~ i] x = [;] = c. 

18 (a) Multiply LDU = Ll Dl Ul by inverses to get L11 LD = Dl Ul U- 1. The left 
side is lower triangular, the right side is upper triangular => both sides are diagonal. 
(b) L,U,L 1,U1 havediagonall'ssoD = D 1. Then L11L andU1U-1 are both I. 

20 A tridiagonal T has 2 nonzeroS in the pivot row and only one nonzero below the pivot 
(one operation to find £ and then one for the new pivot!). T = bidiagonal L times 
bidiagonal U. 

23 The 2 by 2 upper submatrix A2 has the first two pivots 5, 9. Reason: Elimination on A 
starts in the upper left comer with elimination on A2 . 

24 The upper left blocks all factor at the same time as A: Ak is LkUk. 
25 The i, j entry of L -1 is j / i for i > j. And L ii -1 is (1 - i) / i below the diagonal 
26 (K-1)ij = j(n - i + I)/(n + 1) for i > j (and symmetric): (n + l)K-1 looks good. 
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Problem Set 2.7, page 115 

2 (AB)T is not AT BT except when AB = BA. Transpose that to find: BT AT = AT BT. 

4 A = [~ 6] has A2 = 0. The diagonal of AT A has dot products of columns of A with 

themselves. If AT A = 0, zero dot products =} zero columns =} A = zero matrix. 

6 MT = [;~ g~l MT = M needs AT = A and BT = C and DT = D. 

8 The 1 in row 1 has n choices; then the 1 in row 2 has n - 1 choices ... (n! overall). 

10 (3,1,2,4) and (2,3,1,4) keep 4 in place; 6 more even P's keep 1 or 2 or 3 in place; 
(2,1,4,3) and (3,4,1,2) exchange 2 pairs. (1,2,3,4), (4,3,2, I) make 12 even P's. 

14 The i, j entry of PAP is the n - i + 1, n - j + 1 entry of A. Diagonal will reverse order. 

18 (a) 5 + 4 + 3 + 2 + 1 = 15 independent entries if A = AT (b) L has 10 and D has 5; 
total15inLDLT (c) Zero diagonal if AT = -A,leaving4+3+2+1 = lOchoices. 

20 [j ~] = [j ~] [6 -~] [6 i l [ ~ ~] = [~ ~] [~ c ~ b2 ] [6 t] 
-1 -2 -1 = -! 1 ; ~ _~ = LDLT. [ 2 1 0] [1 ] [2 ] [I _1 0] 
° -I 2 ° -~ IiI 3 3 

22 [I 1 J A = [g ! J r ~ jJf 1 I] A = [i ~ J [I -i n 
24 PA = LU i{ 1 I] [~ ~ n = [~ 1}3 J [2 ! 

to exchange and a12 is the pivot, A = L.P.U. = [! 1 J [I 

~]. If we wait 
-2/3 

1 ] [2 1 1] 
I ~ 6 ~ . 

26 One way to decide even vs. odd is to count all pairs that P has in the wrong order. Then 
P is even or odd when that count is even or odd. Hard step: Show that an exchange 
always switches that count! Then 3 or 5 exchanges will leave that count odd. 

31 [~o I~ H ~~] = Ax; ATy = [5~ I~ ;0 J[:Eo] = [I~~~~] : :~~ 
32 Ax • y is the cost of inputs while x • AT Y is the value of outputs. 

33 p 3 = I so three rotations for 360°; P rotates around (1, I, 1) by 120°. 

36 These are groups: Lower triangular with diagonal I's, diagonal invertible D, permuta­
tions P, orthogonal matrices with QT = Q-l. 

37 Certainly BT is northwest. B2 is a full matrix! B-1 is southeast: U A ]-1 = [~-t]' 
The rows of B are in reverse order from a lower triangular L, so B = P L. Then 
B-1 = L -1 p-l has the columns in reverse order from L -1. So B-1 is southeast. 
Northwest B = PL times southeast PU is (PLP)U = upper triangular. 
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38 There are n! permutation matrices of order n. Eventually two powers of P must be 
the same: If pr = ps then pr -s = I. Certainly r - s < n! 

p=[P2 P3]iS5bY5WithP2=[~ ~]andP3=[~ g !] andp6= I. 

Problem Set 3.1, page 127 

1 x + y =f:. y +x and x + (y +z) =f:. (x + y) + z and (CI +C2)X =f:. CIX + C2X. 

3 (a) ex may not be in our set: not closed under multiplication. Also no 0 and no-x 
(b) c(x + y) is the usual (xy)C, while cx + cy is the usual (XC)(yC). Those are equal. 
With C = 3, x = 2, y = 1 this is 3(2 + 1) = 8. The zero vector is the number 1. 

5 (a) One possibility: The matrices cA form a subspace not containing B (b) Yes: the 
subspace must contain A - B = I (c) Matrices whose main diagonal is all zero. 

9 (a) The vectors with integer components allow addition, but not multiplication by ~ 
(b) Remove the x axis from the xy plane (but leave the origin). Multiplication by any 
c is allowed but not all vector additions. 

11 (a) All matrices [~ g] (b) All matrices [~ ~] (c) All diagonal matrices. 

15 (a) Two planes through (0,0,0) probably intersect in a line through (0,0,0) 
(b) The plane and line probably intersect in the point (0,0,0) 
(c) If x and yare in both Sand T, x + y and cx are in both subspaces. 

20 (a) Solution only if b2 = 2bl and b3 = -bl (b) Solution only if b3 = -bl' 

23 The extra column b enlarges the column space unless b is already in the column space. 
[ A b] _ [I ° 1] (larger column space) [ 1 ° 1] (b is in column space) - ° ° 1 (no solution to Ax = b) ° 1 1 (Ax = b has a solution) 

25 The solution to Az = b + b* is z = x + y. If band b* are in C (A) so is b + b*. 

30 (a) If u and v are both in S + T, then u = S I + t 1 and v = S2 + t 2. So U + v = 
(SI + S2) + (t 1 + t2) is also in S + T. And so is cu = CSI + ct 1: a subspace. 

(b) If Sand T are different lines, then S U T is just the two lines (not a subspace) but 
S + T is the whole plane that they span. 

31 If S = C(A) and T = C(B) then S + T is the column space of M = [A B]. 

32 The columns of A B are combinations of the columns of A. So all columns of [ A A B ] 

are already in C(A). But A = [g b] has a larger column space than A2 = [g gl 
For square matrices, the column space is Rn when A is invertible. 

Problem Set 3.2, page 140 

2 (a) Free variables X2, X4, Xs and solutions (-2, 1,0,0,0), (0,0, -2, 1,0), (0,0, -3, 0, 1) 
(b) Free variable X3: solution (1, -1, 1). Special solution for each free variable. 
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4 R = U ~ ~ ~ n R = [~ ~ -n R has ilie sarne nullspace as U and A. 

6 (a) Special solutions (3, 1,0) and (5,0,1) (b) (3,1,0). Total of pivot and free is n. 

8 R = [6 -~ -~] with! = [1]; R = [6 -~ ~] with! = [6 ~l 
10 (a) Impossible row 1 (b) A = invertible (c) A = all ones (d) A = 2!, R = !. 

14 If column 1 = column 5 then Xs is a free variable. Its special solution is (-1,0,0,0, 1). 

16 The nullspace contains only x = 0 when A has 5 pivots. Also the column space is RS
, 

because we can solve Ax = b and every b is in the column space. 

20 Column 5 is sure to have no pivot since it is a combination of earlier columns. With 
4 pivots in the other columns, the special solution is s = (1,0, 1,0,1). The nullspace 
contains all multiples of this vector s (a line in RS). 

24 This construction is impossible: 2 pivot columns and 2 free variables, only 3 columns. 

~g A = [~6 ] has N (A) = C (A) and also (a)(b)(c) are all false. Notice rref(AT
) = [6 ~]. 

32 Any zero rows come after these rows: R = [1 -2 -3], R = [6 ~ ~], R = !. 

33 (a) [6 ~l [6 ~} [6 6} [~ 6} [~~] (b) All 8 matrices are R's! 

35 The nullspace of B = [A A ] contains all vectors x = [ _ ~ ] for y in R 4 • 

36 If Cx = 0 then Ax = 0 and Bx = O. So N(C) = N(A) n N(B) = intersection. 

37 Currents: Yl - Y3 + Y4 = -Yl + Y2 + +Ys = -Y2 + Y4 + Y6 = -Y4 - Ys - Y6 = 0. 
These equations add to ° = 0. Free variables Y3, Ys, Y6: watch for flows around loops. 

Problem Set 3.3, page 151 

1 (a) and (c) are corre.ct; (d) is false because R might have 1 's in nonpivot columns. 

[1 2 0] [R 
3 RA = ~ ~ 6 RB = [RA RA] Rc ~ OA 

° ] Zero rows go 
RA ~ to the bottom 

5 I think Rl = AI, R2 = A2 is true. But RI - R2 may have -1 's in some pivots. 

7 Special solutions in N = [-2 -4 1 0; -3 -5 ° 1] and [1 ° 0; ° -2 1]. 

13 P has rank r (the same as A) because elimination produces the same pivot columns. 

14 The rank of RT is also r. The example matrix A has rank 2 with invertible S: 

p = [i~] pT = [~ ~~] ST = U~] S = u n 
16 (UVT)(WZT) = U(VT W)ZT has rank one unless the inner product is vTw = 0. 
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18 If we know that rank(B TAT) < rank ( AT), then since rank stays the same for transposes, 
(apologies that this fact is not yet proved), we have rank(AB) < rank(A). 

20 Certainly A and B have at most rank 2. Then their product A B has at most rank 2. 
Since BA is 3 by 3, it cannot be 1 even if AB = I. 

21 (a) A and B will both have the same nullspace and row space as the R they share. 
(b) A equals an invertible matrix times B, when they share the same R. A key fact! 

22 A = (pivot columns)(nonzero rows of R) = [! :H b ~ n = [t I ~] + 

[~ ~ n B = [~ n [b n = ~~~~;;ws = [~ ~] + [~ ~] 
26 The m by n matrix Z has r ones to start its main diagonal. Otherwise Z is all zeros. 

27 R =[1 F]=[ r by r r by n-r]. rref(RT) =[1 0]. rref(RT R) = same R o 0 m - r by r m - r by n - r ' 0 0 ' 

28 The row-column reduced echelon form is always [~ ~ ]; 1 is r by r. 

Problem Set 3.4, page 163 

[
2 1 3 b I ] [2 1 3 b I ] [1 1/2 3/2 5] 

2 6 3 9 b2 -+ 0 0 0 b2 - 3b I Then [R d] = 0 0 0 0 
4 2 6 b3 0 0 0 b3 - 2bI 0 0 0 0 

Ax = b has a solution when b2 - 3b I = 0 and b3 - 2b I = 0; C (A) = line through 
(2,6,4) which is the intersection of the planes b2 - 3b l = 0 and b3 - 2b I = 0; 
the nullspace contains all combinations of SI = (-1/2,1,0) and S2 = (-3/2,0,1); 
particular solution x p = d = (5,0,0) and complete solution x p + CIS 1 + C2S2. 

1 1 
4 x It =xp+xn = (-2,0'-2,0)+x2(-3,1,0,0)+X4(0,0,-2,1). comp e e 

. b [5b I - 2b3 ] 6 (a) Solvable If b2 = 2b I and 3 1 - 3b3 + b4 = O. Then x = b
3 

_ 2b
I 

= X P 

. [5b I 
- 2b3

] [-1] 
(b) Solvable if b2 = 2bl and 3b1 - 3b3 + b4 = O. X = b3 "02b 1 + X3 - ~ . 

8 (a) Every b is in C (A): independent rows, only the zero combination gives O. 
(b) Need b3 = 2b2, because (row 3) - 2 (row 2) = O. 

12 (a) Xl - X2 and 0 solve Ax = 0 (b) A(2xl - 2X2) = 0, A(2xl - X2) = b 

13 (a) The particular solution xp is always multiplied by 1 (b) Any solution can be xp 

(c) [~ ~] [~] = [~l Then [~] is shorter (length J2) than [~] (length 2) 

(d) The only "homogeneous" solution in the nullspace is x n = 0 when A is invertible. 

14 If column 5 has no pivot, Xs is afree variable. The zero vector is not the only solution 
to Ax = O. If this system Ax = b has a solution, it has infinitely many solutions. 
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16 The largest rank is 3. Then there is a pivot in every row. The solution always exists. 
The column space is R3. An example is A = [I F] for any 3 by 2 matrix F. 

18 Rank = 2; rank = 3 unless q = 2 (then rank = 2). Transpose has the same rank! 

25 (a) r < m, always r < n (b) r = m, r < n (c) r < m, r = n (d) r = m = n. 

[
1 2 3 0] [1 2 0 0] [-2] [1 2 3 S] [1 2 0 -1] 

28 0 0 4 0 --+ 0 0 1 0 ; Xn = ~; 0 0 4 8 --+ 0 0 1 2· 

Free X2 = 0 gives x p = (-1,0, 2) because the pivot columns contain I. 

30 [1 ~ ~ ~ ;] --+ [~ ~ ~-~ ~] --+ [~ ~ ~ ~ -~]; [-i];xn = X3 [-~]. 
2 0 4 9 10 0 0 0 3 6 0 0 0 1 2 2 0 

36 If Ax = band ex = b have the same solutions, A and C have the same shape and 
the same nullspace (take b = 0). If b = column 1 of A, x = (1,0, ... ,0) solves 
Ax = b so it solves ex = b. Then A and C share column 1. Other columns too: A = C ! 

Problem Set 3.5, page 178 

2 VI, V2, V3 are independent (the -1 's are in different positions). All six vectors are on 
the plane (1, 1, 1, 1) • V = 0 so no four of these six vectors can be independent. 

3 If a = 0 then column 1 = 0; if d = 0 then b(column 1) - a (column 2) = 0; if f = 0 
then all columns end in zero (they are all in the xy plane, they must be dependent). 

6 Columns 1,2,4 are independent. Also 1, 3,4 and 2, 3,4 and others (but not 1, 2, 3). 
Same column numbers (not same columns!) for A. 

8 If CI (W2 + W3) + C2(Wl + W3) + C3(WI + W2) = 0 then (C2 + C3)WI + (CI + C3)W2 + 
(CI + C2)W3 = O. Since the w's are independent, C2 + C3 = CI + C3 = CI + C2 = o. 
The only solution is CI = C2 = C3 = O. Only this combination of VI, V2, V3 gives O. 

11 (a) Line in R3 (b) Plane in R3 (c) All of R3 (d) All of R3. 

12 b is in the column space when Ax = b has a solution; c is in the row space when 
AT y = c has a soluti,On. False. The zero vector is always in the row space. 

" 

15 The n independent vectors span a space of dimension n. They are a basis for that space. 
If they are the columns of A then m is not less than n (m > n). 

18 (a) The 6 vectors might not span R4 (b) The 6 vectors are not independent 
(c) Any four might be a basis. 

20 One basis is (2,1,0), (-3,0,1). A basis for the intersection with the xy plane is 
(2,1,0). The normal vector (1, -2, 3) is a basis for the line perpendicular to the plane. 

22 (a) True (b) False because the basis vectors for R6 might not be in S. 

25 Rank 2 if C = 0 and d = 2; rank 2 except when C = d or C = -d. 

28 [-1 ~ ~l [~-~ ~l [~ ~ -1 l [-~ -~ ~] and [-1 o -1] 
01· 

32 y (0) = 0 requires A + B + C = O. One basis is cos x - cos 2x and cos x - cos 3x. 
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34 YI (x), Y2(X), Y3(X) can be x, 2x, 3x (dim 1) or x, 2x, x 2 (dim 2) or x, x 2, x 3 (dim3). 

37 The subspace of matrices that have AS = SA has dimension three. 

39 If the 5 by 5 matrix [A b] is invertible, b is not a combination of the columns of A. 
If [A b] is singular, and the 4 columns of A are independent, b is a combination of 
those columns. In this case Ax = b has a solution. 

41 I = [1 1 ] _ [ 1 1] + [ 1 1] + [1 1] _ [1 1] . The six P's . 
1 1 1 1 1 are dependent 

42 The dimension of S is (a) zero when x = 0 (b) one when x = (1,1,1,1) 
(c) three when x = (1,1, -1, -1) because all rearrangements have Xl + ... + X4 = ° 
(d) four when the x's are not equal and don't add to zero. No x gives dimS = 2. 

43 The problem is to show that the u's, v's, w's together are independent. We know the 
u's and v's together are a basis for V, and the u's and w's together are a basis for W. 
Suppose a combination of u's, v's, w's gives O. To be proved: All coefficients = zero. 

Key idea: The part x from the u's and v's is in V, so the part from the w's is -x. This 
part is now in V and also in W. But if -x is in V n W it is a combination of u's only. 
Now x - x = 0 uses only u's and v's (independent in V!) so all coefficients of u's and 
v's must be zero. Then x = 0 and the coefficients of the w's are also zero. 

44 The inputs to an m by n matrix fill Rn. The outputs (column space!) have dimension 
r. The nullspace has n - r special solutions. The formula becomes r + (n - r) = n. 

Problem Set 3.6, page 190 

1 (a) Rowand column space dimensions = 5, nullspace dimension = 4, dim(N (AT» 
= 2 sum = 16 = m + n (b) Column space is R3; left nullspace contains only O. 

4 Ca) [i~] (b) Impossible: r +Cn-r) must be 3 Cc) [I 1] Cd) l~ -i] 
(e) Impossible Row space = column space requires m = n. Then m - r = n - r; 
nullspaces have the same dimension. Section 4.1 will prove N(A) and N(AT) 
orthogonal to the row and column spaces respectively-here those are the same space. 

6 A: dim 2,2,2,1: Row's (0,3,3,3) and (0,1,0, 1); columns (3,0,1) and (3,0,0); 
nullspace (1,0,0,0) and (0, -1,0, 1); N (AT) (0, 1, 0). B: dim 1,1,0,2 Row space 
(1), column space (1,4,5), nullspace: empty basis, N (AT) (-4,1, 0) and (-5,0, 1). 

9 (a) Same row space and nullspace. So rank (dimension of row space) is the same 
(b) Same column space and left nUllspace. Same rank (dimension of column space). 

11 (a) No solution means that r < m. Always r < n. Can't compare m and n 
(b) Since m - r > 0, the left nullspace must contain a nonzero vector. 

12 A neat choice is U n D ~ ~] = [~ ~ n r + en - r) = n = 3does 

not match 2 + 2 = 4. Only v = 0 is in both N (A) and C (AT). 

16 If Av = 0 and v is a row of A then v • v = O. 
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18 Row 3-2 row 2+ row 1 = zero row so the vectors c(l, -2, 1) are in the left nullspace. 
The same vectors happen to be in the nullspace (an accident for this matrix). 

20 (a) Special solutions (-1,2,0,0) and (-i, 0, -3,1) are perpendicular to the rows of 
R (and then ER). (b) AT y = 0 has 1 independent solution = last row of £-1. 
(£-1 A = R has a zero row, which is just the transpose of AT y = 0). 

21 (a) u and w (b) v and z (c) rank < 2 if u and ware dependent or if v and z 
are dependent (d) The rank of uvT + wzT is 2. 

24 AT Y = d puts d in the row space of A; unique solution if the left nullspace (nullspace 
of AT) contains only y = O. 

26 The rows of C = A B are combinations of the rows of B. So rank C < rank B. Also 
rank C < rank A, because the columns of C are combinations of the columns of A. 

29 all = l,a12 = O,a13 = l,a22 = O,a32 = 1,a31 = 0,a23 = l,a33 = 0,a21 = 1. 

30 The subspaces for A = uv T are pairs of orthogonal lines (v and v1., u and u1.). 
If B has those same four subspaces then B = c A with c -I- 0. 

31 (a) AX = ° if each column of X is a multiple of (1,1,1); dim(nullspace) - 3. 
(b) If AX = B then all columns of B add to zero; dimension of the B's - 6. 
(c) 3 + 6 = dim(M 3X3) = 9 entries in a 3 by 3 matrix. 

32 The key is equal row spaces. First row of A = combination of the rows of B: only 
possible combination (notice I) is 1 (row 1 of B). Same for each row so F = G. 

Problem Set 4.1, page 202 

1 Both nullspace vectors are orthogonal to the row space vector in R3. The column space 
is perpendicular to the nullspace of AT (two lines in R2 because rank = 1). 

3 <al U -~ ]}bllmpoSSible. HJ notorthogonaIto D}Cl m and [~}n 
C(A) and N(AT) is impossible: not perpendicular (d) Need A2 = 0; take A = U:U 
(e) (1, 1, 1) in the nullspace (columns add to 0) and also row space; no such matrix. 

6 Multiply the equations by y 1, Y2, Y3 = 1, 1, -1. Equations add to ° = 1 so no solution: 
y = (1,1, -1) is in the left nUllspace. Ax = b would need 0= (y T A)x = y Tb = 1. 

8 x = x r + X n, where x r is in the row space and x n is in the nullspace. Then Ax n = 0 
and Ax = AXr + AXn = Axr . All Ax are in C(A). 

9 Ax is always in the column space of A. If AT Ax = 0 then Ax is also in the nullspace 
of AT. So Ax is perpendicular to itself. Conclusion: Ax = 0 if AT Ax = O. 

10 (a) With AT = A,thecolumnandrowspaces are the same (b) xisinthenullspace 
and z is in the column space = row space: so these "eigenvectors" have x T z = 0. 

12 x splits into Xr + Xn = (1, -1) + (1,1) = (2,0). Notice N (AT) is a plane (1,0) = 
(1,1)/2 + (1, -1)/2 = Xr + x n. 

13 VT W = zero makes each basis vector for V orthogonal to each basis vector for W. 
Then every v in V is orthogonal to every w in W (combinations of the basis vectors). 
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14 Ax = Bx means that [A B ] [ _;] = O. Three homogeneous equations in four 

unknowns always have a nonzero solution. Here x = (3,1) and x = (1,0) and 
Ax = Bx = (5,6,5) is in both column spaces. Two planes in R3 must share a line. 

16 AT y = 0 leads to (Ax)T y = X T AT Y = 0. Then y 1.. Ax and N(AT) 1.. C (A). 

18 S J.. is the nullspace of A = [~ ~ ~ ]. Therefore S J.. is a subspace even if S is not. 

21 For example (-5,0, 1,1) and (0,1, -1,0) span SJ.. =nullspace of A = [~ ~ ~ ~]. 
23 x in V J.. is perpendicular to any vector in V. Since V contains all the vectors in S, 

x is also perpendicular to any vector in S. So every x in V J.. is also in S J.. . 

28 (a) (1, -1,0) is in both planes. Normal vectors are perpendicular, but planes still in­
tersect! (b) Need three orthogonal vectors to span the whole orthogonal complement. 
(c) Lines can meet at the zero vector without being orthogonal. 

30 When AB = 0, the column space of B is contained in the nullspace of A. Therefore 
the dimension of C(B) < dimension of N(A). This means rank(B) < 4 - rank(A). 

31 null(N') produces a basis for the row space of A (perpendicular to N(A». 

32 We need r Tn = ° and c T.f. = 0. All possible examples have the form ac r T with a i- 0. 

33 Both r's orthogonal to both n's, both c's orthogonal to both .f. 's, each pair independent. 
All A's with these subspaces have the form [c 1 c2]M [r 1 r2]T for a 2 by 2 invertible M. 

Problem Set 4.2, page 214 

1 (a) aTh/aTa=5/3; p=5a/3; e =(-2,1,1)/3 (b) aTb/aTa=-I; p=a; e =0. 

1 [1 3 PI = - 1 
3 1 

1 
1 
1 

1] 1 [5] 1 [1 3 1] [1] 1 and PI b = - 5 . P2 = - 3 9 3 and P2h = 3 . 
1 3 5 11 1 31 1 

6 PI = (t, -~, -~) and P2 =(~, ~, -~) and P3 = (~, -~, ~). So PI + P2 + P3 = b. 

9 Since A is invertible, P = A(AT A)-I AT = AA-1(AT)-I AT = I: project on all of R2. 

11 (a) p=A(ATA)-IATb=(2,3,0),e=(0,0,4),ATe =0 (b) p=(4,4,6),e=0. 

15 2A has the same column space as A. x for 2A is half ofx for A. 

16 !(1, 2, -1) + ~(l, 0,1) = (2,1,1). So h is in the plane. Projection shows Ph = b. 

18 (a) I - P is the projection matrix onto (1, -1) in the perpendicular direction to (1, 1) 
(b) I - P projects onto the plane x + y + z = ° perpendicular to (1, 1, 1). 

[ 
1] [ 1/6 -1/6 -1/3] [5/6 1/6 1/3] 

20 e = -1 , Q = ~~; = -1/6 1/6 1/3, I - Q = 1/6 5/6 -1/3 . 
-2 -1/3 1/3 2/3 1/3 -1/3 1/3 

21 (A(AT A)-l AT)2 = A(AT A)-I(AT A)(AT A)-l AT = A(AT A)-l AT. So p 2 = P. 
Pb is in the column space (where P projects). Then its projection P(Pb) is Pb. 
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24 The nullspace of AT is orthogonal to the column space C (A). So if ATb = 0, the pro­
jectionofb ontoC(A) shouldbep = O. CheckPb = A(ATA)-IATb = A(ATA)-IO. 

28 p 2 = P = p T give pT P = P. Then the (2,2) entry of P equals the (2,2) entry of 
P T P which is the length squared of column 2. 

29 A = BT has independent columns, so AT A (which is BBT) must be invertible. 

30 (al The column space is the line through a = [!] so Pc = :~: = 2
1
5 [:2 in 

(b) The row space is the line through v = (1,2,2) and PR = vvT IvTv. Always 
Pc A = A (columns of A project to themselves) and APR = A. Then Pc APR = A ! 

31 The error e = b - p must be perpendicular to all the a's. 

32 Since P1b is in C(A), P2(P1b) equals P1b. So P2PI = PI = aaT laTa where 
a = (1,2,0). 

33 If PI P2 = P2 PI then S is contained in T or T is contained in S. 
34 BBT is invertible as in Problem 29. Then (AT A)(BBT) = product of r by r invertible 

matrices, so rank r. AB can't have rank < r, since AT and BT cannot increase the rank. 
Conclusion: A (m by r of rank r) times B (r by n of rank r) produces AB of rank r. 

Problem Set 4.3, page 226 

1 A = [l I] andb = [1] giveATA = [: :6] and ATb = [(I; 1 
AT Ax = AT b gives x = [!] and p = Ax = [A] and e = b - p = [ i] 

17 E = II e 112 = 44 3 

5 E = (C-0)2+(C-8)2+(C-8)2+(C-20)2. AT = [1 1 1 l]andATA = [4]. 
AT b = [36] and (AT A) -1 AT b = 9 = best height C. Errors e = (-9, -1, -1, 11). 

7 A = [0 1 3 4 ]T, ,AT A = [26] and ATb = [112]. Best D = 112/26 = 56/13. 

8 x = 56/13, P = (56/13)(0,1,3,4). (C, D) = (9, 56/13) don't match (C, D) = (1,4). 
Columns of A were not perpendicular so we can't project separately to find C and D. 

9 ~~~j!~l~ [t ~ ~] [g] = [ ~]. AT Ax= [~ 2~ ~~] [g] = [li~]. 
4D to 3D 1 4 16 E 20 26 92 338 E 400 

11 (a) The best line x = 1 + 4t gives the center point Ii = 9 when t = 2. 

(b) The first equation C m + D L ti = L bi divided by m gives C + Dt = Ii. 
13 (ATA)-IAT(b-Ax) =x-x. Whene =b-AxaveragestoO,sodoesx-x. 

14 The matrix (x - x)(x - x)T is (AT A)-I AT(b - Ax)(b - Ax)T A(AT A)-I. When the 
average of (b - Ax)(b - Ax)T is a 2 I, the average of (x - x)(x - x)T will be the 
output covariance matrix (AT A)-I ATa 2 A(AT A)-I which simplifies to a 2(AT A)-I. 
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16 110 blO + :0 X9 = 110 (b 1 + ... + blO). Knowing X9 avoids adding all b's. 

18 P = Ax = (5, 13, 17) gives the heights of the closest line. The error is b - p = 
(2, -6, 4). This error e has Pe = Pb - P p = p - p = o. 

21 e is in N(AT); P is in C(A); x is in C(AT); N(A) = {o} = zero vector only. 

23 The square of the distance between points on two lines is E = (y - x)2 + (3y - x)2 + 
(1 + x)2. Derivatives !8E/8x = 3x - 4y + 1 = 0 and !8E/8y = -4x + lOy = O. 
The solution is x = -5/7, y = -2/7; E = 2/7, and the minimum distance is ";2/7. 

25 3 points on a line: Equal slopes (b2 -b1) / (t2 -tl) = (b3 -b2) / (t3 -t2). Linear algebra: 
Orthogonal to (1,1,1) and (tl, t2, t3) is y = (t2-t3, t3-t1. tl-t2) in the leftnullspace. 
b is in the column space. Then y T b = 0 is the same equal slopes condition written as 
(b2 - bd(t3 - t2) = (b3 - b2)(t2 - tl). 

27 The shortest link connecting two lines in space is perpendicular to those lines. 

28 Only 1 plane contains 0, aI, a2 unless aI, a2 are dependent. Same test for at. ... ,an. 

Problem Set 4.4, page 239 

3 (a) AT A will be 16/ (b) AT A will be diagonal with entries 1,4,9. 

6 Ql Q2 is orthogonal because (Ql Q2)T QI Q2 = Qi QI Ql Q2 = Qi Q2 = 1. 

8 If ql and q2 are orthonormal vectors in RS then (qIb)ql + (qib)q2 is closest to b. 

11 (a) Twoorthonormalvectorsareql = 110(1,3,4,5,7) andq2 = 1
10(-7,3,4,-5,1) 

(b) Closest in the plane: project Q QT (1,0,0,0,0) = (0.5, -0.18, -0.24, 0.4, 0). 

13 The multiple to subtract is ~~~. Then B = b - ~~~a = (4,0) - 2· (1, 1) = (2, -2). 

14 [1 4]_[ J[lIa ll qIh]_[I/../2 1/../2][..fi 2..fi]_QR 
1 0 - ql q2 0 IIBII - 1/../2 -1/../2 0 2../2 - . 

15 (a) ql = ~(1,2,-2), q2 = ~(2,1,2), q3 = ~(2,-2,-1) (b) Thenullspace 
of AT contains q3 (c) X = (AT A)-1 AT (1,2,7) = (1,2). 

16 The projection p = (aTbjaTa)a = 14a/49 = 2a/7 is closest to b; ql = a/llall = 
a/7is (4,5,2,2)/7. B = b - p = (-1,4,-4,-4)/7 has IIBII = 1 soq2 = B. 

18 A = a = (I,-I,O,O);B = b-p = (!, !,-I,O);C = c-PA-PB = (~,~, ~,-1). 
Notice the pattern in those orthogonal A, B, C. In RS

, D would be (*, *, *, *, -1). 

20 (a) True (b) True. Qx = xlql +x2q2.IIQxI12 = xi +x~ becauseql ·q2 = o. 
21 The orthonormal vectors are ql = (1,1,1,1)/2 and q2 = (-5, -1,1,5)/ J52. Then 

b = (-4, -3, 3, 0) projects to P = (-7, -3, -1, 3)/2. And b-P = (-1, -3, 7, -3)/2 
is orthogonal to both q 1 and q 2. 

22 A = (1,1,2), B = (1,-1,0), C = (-1,-1,1). These are not yet unit vectors. 

26 (qiC*)q2 = :;~B becauseQ2 = 11:11 and the extraql inC* isorthogonaltoQ2· 

28 There are mn multiplications in (11) and !m2n multiplications in each part of (12). 

Jason
高亮
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30 The wavelet matrix W has orthonormal columns. Notice W-1 = W T in Section 7.3. 

32 Ql = [b -n reflects across x axis, Q2 = [g _ ~ -~] across plane y + z = O. 

33 Orthogonal and lower triangular =} ± I on the main diagonal and zeros elsewhere. 

1 det(2A) = 8; det(-A) = (-1)4detA = ~; det(A2) = !; det(A- 1) = 2 = det(AT)-1. 

5 IJ51=1, IJ61=-I, Ihl=-1. Determinants 1, 1,-1,-1 repeat so IJ101 1 =1. 

8 QTQ =! =} IQI2 = I=} IQI = ±1; Qn staysorthogonalsodetcan'tblowup. 

10 If the entries in every row add to zero, then (1, 1, ... , 1) is in the nullspace: singular 
A has det = O. (The columns add to the zero column so they are linearly dependent.) 
If every row adds to one, then rows of A - ! add to zero (not necessarily detA = 1). 

11 CD = -DC =} det CD = (-I)n det DC and not - det DC. If n is even we can have 
an invertible CD. 

14 det(A) = 36 and the 4 by 4 second difference matrix has det = 5. 

15 The first determinant is 0, the second is 1 - 2t2 + t 4 = (1 - t 2)2. 

17 Any 3 by 3 skew-symmetric K has det(KT ) = det(-K) = (-1)3det(K). This is 
-det(K). But always det(KT

) = det(K), so we must have det(K) = 0 for 3 by 3. 

21 Rules 5 and 3 give Rule 2. (Since Rules 4 and 3 give 5, they also give Rule 2.) 

(A) - 0 2 _ [18 7] (A2) _ -1 _ 1 [ 3 -1] 1 23 det - 1 , A - 14 11 ' det - 100, A - 10 -2 4 has det 10' 

det(A - AI) = A2 -7A + 10 = 0 when A = 2 or A = 5; those are eigenvalues. 

27 det A = abe, det B = -abed, det C = a (b - a) (e - b) by doing elimination. 

32 Typical determinants of rand(n) are 106, 1025 , 1079 , 10218 for n = 50, 100,200,400. 
randn (n) with normal distribution gives 1031 , 1078 , 10186, Inf which means > 21024. 
MATLAB allows 1.999999999999999 x 21023 ~ 1.8 X 10308 but one more 9 gives Inf! 

2 det A = -2, independent; det B = 0, dependent; det C = -1, independent. 

4 alla23a32a44 gives -1, because 2 B 3, a14a23a32a41 gives +1, detA = 1 - 1 = 0; 
det B = 2·4·4·2 - 1 ·4·4· 1 = 64 - 16 = 48. 

6 (a) If all = a22 = a33 = 0 then 4 terms are sure zeros (b) 15 terms must be zero. 

8 Some term alaa2/3 , .. anw in the big formula is not zero! Move rows 1, 2, ... , n into 
rows a, f3, ... , (J). Then these nonzero a's will be on the main diagonal. 

9 To get + 1 for the even permutations the matrix needs an even number of -1 's. For the 
odd P 's the matrix needs an odd number of -1 'so So six 1 's and det = 6 are impossible 
five l'sandone-l willgiveAC = (ad -be)! = (detA)! max(det) = 4. 
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[ d -b] [0 42 -35] det B = 1(0) + 2(42) + 3(-35) = -21. 
11 C = -e a' D = _~ -2~ ~j' Puzzle: detD = 441 = (-21)2. Why? 

12 C = [~ ~ ~] and ACT = [6 ~ ~]. Therefore A-I = -;}C T = C T / detA. 
123 004 

13 (a) Cl = 0, C2 = -1, C3 = 0, C4 = 1 (b) Cn = -Cn-2 by cofactors of row 
I then cofactors of column 1. Therefore C 10 = -Cg = C6 = -C4 = C2 = -1. 

15 The 1,1 cofactor of the n by n matrix is En-I. The 1,2 cofactor has a single 1 in its 
first column, with cofactor En- 2: sign gives -En- 2. So En = En- l - En- 2. Then El 
to E6 is 1,0, -1, -1,0, 1 and this cycle of six will repeat: Eloo = E4 = -1. 

16 The 1, 1 cofactor of the n by n matrix is Fn- l . The 1,2 cofactor has a 1 in column 
1, with cofactor Fn- 2 . Multiply by (_1)1+2 and also (-1) from the 1,2 entry to find 
Fn = Fn- 1 + Fn- 2 (so these determinants are Fibonacci numbers). 

19 Since x, x2, x3 are all in the same row, they are never multiplied in det V4. The deter­
minant is zero at x = a or b or e, so det V has factors (x - a)(x - b)(x - e). Multiply 
by the cofactor V3. The Vandermonde matrix Vjj = (Xi)j-l is for fitting a polynomial 
p(x) = b at the points Xi. It has det V = product of all Xk - Xm for k > m. 

20 G2 = -1, G3 = 2, G4 = -3, and Gn = (_1)n-l(n - 1) = (product of the A's). 

24 (a) All L's have det = 1; detUk = detAk = 2,6,-6 (b) Pivots 5,6/5,7/6. 

25 problem23 givesdet[_CA-{ ~] = landdet[~ Z] = IAltimesID-CA-lBI 

which is lAD - ACA-l BI. If AC = CA this is lAD - CAA- l BI = det(AD - CB). 

27 (a) det A = an Cll + ... + alnCln . Derivative with respect to all = cofactor Cll . 

29 There are five nonzero products, all 1 's with a plus or minus sign. Here are the (row, 
column) numbers and the signs: + (1,1)(2,2)(3,3)(4,4) + (1,2)(2,1)(3,4)(4,3) -
(1,2)(2,1)(3,3)(4,4) - (1,1)(2,2)(3,4)(4,3) - (1,1)(2,3)(3,2)(4,4). Total-I. 

32 The problem is to show that F2n+2 = 3F2n - F2n-2. Keep using Fibonacci's rule: 

F2n+2 = F2n+l + F2n = F2n + F2n- l + F2n = 2F2n + (F2n - F2n-2) = 3F2n - F2n- 2. 

33 The difference from 20 to 19 multiplies its 3 by 3 cofactor = 1: then det drops by 1. 

34 (a) The last three rows must be dependent (b) In each of the 120 terms: Choices 
from the last 3 rows must use 3 columns; at least one of those choices will be zero. 

Problem Set 5.3, page 278 

2 (a) y = I ~ 61 / I ~ ~ I = e/(ad - be) (b) y = det B2/ detA = (fg - id)/ D. 

3 (a) Xl = 3/0 and X2 = -2/0: no solution (b) Xl = X2 = 0/0: undetermined. 

4 (a) Xl = det([b a2 a3 H/ detA, if detA =f. ° (b) The determinant is linear in 
its first column so xllal a2 a31+x21a2 a2 a31+x31a3 a2 a31. The lasttwo determinants 
are zero because of repeated columns, leaving xllal a2 a31 which is Xl detA. 
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6 (a) [~~! ~] [

3 2 

(b) ~ 2 4 
412 

~]. An invertible s?,~metric matrix 
has a symmetnc Inverse. 

3 

[ 

6 -3 0] [3 0 0] This is (detA)1 and detA = 3. 
8 C = 3 1 -1 and ACT = 0 3 0 . The 1, 3 cofactor of A is O. 

-6 2 1 0 0 3 Multiplying by 4 or 100: no change. 

9 If we know the cofactors and detA = 1, then C T = A-I and also detA- I = 1. 
Now A is the inverse of C T, so A can be found from the cofactor matrix for C. 

11 The cofactors of A are integers. Division by det A = ± 1 gives integer entries in A-I. 

15 For n = 5, C contains 25 cofactors and each 4 by 4 cofactor has 24 terms. Each term 
needs 3 multiplications: total 1800 multiplications vs.I25 for Gauss-Jordan. 

311 Area of faces i j k -2i -2j + 8k 
17 Volume= f ~ ~ =20. length of cross product = ~ 1 f = length = 6.J2 

I 211 
18 (a) Area "2 341 = 5 

051 
(b) 5 + new triangle area ~ ~ ~ f = 5 + 7 = 12. 

-101 

21 The maximum volume is LIL2L3L4 reached when the edges are orthogonal in R4. 
With entries 1 and -1 all lengths are -J4 = 2. The maximum determinant is 24 = 16, 
achieved in Problem 20. For a 3 by 3 matrix, det A = (.J3)3 can't be achieved. 

23 ATA = [:~] [a b c] = [a~a b~b ~] has detATA = (ilall lib II IIcl1)2 
TOO T detA = ±llallllbllllcll c c c 

25 The n-dimensional cube has 2n comers, n2n- 1 edges and 2n (n -I)-dimensional faces. 
Coefficients from (2 + x)n in Worked Example 2.4A. Cube from 21 has volume 2n. 

26 The pyramid has volume i. The 4-dimensional pyramid has volume 2
1
4 (and ;! in Rn) 

31 Base area 10, height 2, volume 20. 

35 S = (2,1,-1), area IIPQ x PSII = 11(-2,-2,-1)11 = 3. The other four comers 
can be (0,0,0), (0,0,2), (1,2,2), (1, 1,0). The volume of the tilted box is I det I = 1. 

39 ACT = (detA)1 gives (detA)(detC) = (detA)n. Then detA = (detC)I/3 with 
n = 4. With detA-I is 1/ detA, construct A-I using the cofactors. Invert to find A. 

Problem Set 6.1, page 293 

1 The eigenvalues are 1 and 0.5 for A, 1 and 0.25 for A 2 , 1 and 0 for A 00. Exchanging 
the rows of A changes the eigenvalues to I and -0.5 (the trace is now 0.2 + 0.3). 
Singular matrices stay singular during elimination, so A = 0 does not change. 

3 A has Al = 2 and A2 = -1 (check trace and determinant) with XI = (1, 1) and 
X2 = (2, -1). A-I has the same eigenvectors, with eigenvalues I/A = ~ and-1. 

6 A and B have Al = 1 and A2 = 1. AB and BA have A = 2 ±.J3. Eigenvalues of AB 
are not equal to eigenvalues of A times eigenvalues of B. Eigenvalues of AB and BA 
are equal (this is proved in section 6.6, Problems 18-19). 
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8 (a) Multiply Ax to see AX which reveals A (b) Solve (A - Al)x = 0 to find x. 

10 A has Al = 1 and A2 = .4 with Xl = (1,2) and X2 = (1, -1). Aoo has)q = 1 and 
A2 = ° (same eigenvectors). A 100 has Al = 1 and A2 = (.4)100 which is near zero. 
So A 100 is very near Aoo: same eigenvectors and close eigenvalues. 

11 Columns of A -All are in the nullspace of A -A21 because M = (A -A21)(A -All) 
= zero matrix [this is the Cayley-Hamilton Theorem in Problem 6.2.32]. Notice that 
M has zero eigenvalues (AI - A2)(AI - AI) = ° and (A2 - A2)(A2 - AI) = 0. 

13 (a) Pu = (uuT)u = u(uTu) = U so A = 1 (b) Pv = (uuT)v = u(uTv) = 0 
(c) Xl = (-1,1,0,0), X2 = (-3,0,1,0), X3 = (-5,0,0,1) all have Px = Ox = O. 

15 The other two eigenvalues are A = t(-I ± i J3); the three eigenvalues are 1,1,-1. 

16 Set A = ° in det(A - AI) = (AI - A) ... (An - A) to find det A = (Ad(A2) ... (An). 

17 Al = tea + d + J(a - d)2 + 4hc) and A2 = tea + d - ,.; ) add to a + d. 
If A has Al = 3 and A2 = 4 then det(A - AI) = (A - 3)(A - 4) = A 2 - 7A + 12. 

19 (a) rank = 2 (b) det(BT B) = 0 (d) eigenvalues of (B 2 + 1)-1 are 1, !, t. 
20 Last rows are -28,11 (check trace and det) and 6, -11, 6 (to match det(C - AI). 

22 A = I (for Markov), ° (for singular), -! (so sum of eigenvalues = trace = i). 

23 [~ ~]. [~ 6]. [! ! l Always A2 is the zero matrix if A = ° and 0, by the 

Cayley-Hamilton Theorem in Problem 6.2.32. 

28 B has A = -1, -1, -1,3 and C has A = 1,1,1, -3. Both have det = -3. 

32 (a) u is a basis for the nullspace, v and w give a basis for the column space 
(b) X = (0, ~, t) is a particular solution. Add any cu from the nullspace 
(c) If Ax = u had a solution, u would be in the column space: wrong dimension 3. 

34 det(P - AI) = ° gives the equation A 4 = 1. This reflects the fact that p 4 = I. 
The solutions of A 4 = 1 are A = 1, i, -1, -i. The real eigenvector XI = (1, I, 1, 1) 
is not changed by the permutation P. Three more eigenvectors are (i, i 2 , i 3 , i 4 ) and 
(1, -1,1, -1) and (-i, (-if, (-i?, (-i)4). 

36 Al = e2ni
/ 3 and A2 = e-2ni

/
3 give detAIA2 = 1 and trace Al + A2 = -1. 

[

COS e - sin e ], 21T 
A = . e e with e = - has this trace and det. So does every M-I AM! 

sm cos 3 

Problem Set 6.2, page 307 

1 [~ n = [~ :] [~ ~] [~ -: l U n = [-: ~] [g ~] [i -n 
3 If A = SAS-I then the eigenvalue matrix for A + 21 is A + 21 and the eigenvector 

matrix is still S. A + 21 = SeA + 2I)S-I = SAS-l + S(2I)S-1 = A + 2/. 

4 (a) False: don't know A's (b) True (c) True (d) False: need eigenvectors of S 

6 The columns of S are nonzero multiples of (2,1) and (0,1): either order. Same for A-I. 
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1 [AI 
Al - A2 1 

9 (a) A = [·i 
(b) An = [~ 

12 (a) False: don't know A (b) True: an eigenvector is missing (c) True. 

13 A - [8 3] ( th) A _ [ 9 4] A _ [10 5]. only eigenvectors 
- -32 oro er, - -4 l' - -5 0' are x = (c,-c). 

15 Ak = SA k S-I approaches zero if and only if every Il I < 1; A~ --?- Af, A~ --?- 0. 

17 A = [.~ .~J. S = [i -i} Aio [i] = (.9)10 [iJ. AiO [-i] = (.3)10 [-iJ. 
AiO [~] = (.9)10 [i] + (.3)10 [-i] because [~] is the sum of [i] + [ -iJ. 

19 Bk = [1 1] [5 O]k [1 1] = [5k 5k 
-4k] ° -1 ° 4 ° -1 ° 4k . 

21 traceST = (aq + bs) + (cr + dt) is equal to (qa + rc) + (sb + td) = traceTS. 
Diagonalizable case: the trace of SAS-I = trace of (AS-l)S = A: sum a/the A's. 

24 The A's form a subspace since cA and Al + A2 all have the same S. When S = I 
the A's with those eigenvectors give the subspace of diagonal matrices. Dimension 4. 

26 Two problems: The nullspace and column space can overlap, so x could be in both. 
There may not be r independent eigenvectors in the column space. 

27 R = S ,JAS-l = [i ~] has R2 = A. ,JB needs A = ,J9 and yCT, trace is not real. 

Note that [-~ _ ~] can have yCT = i and -i, trace 0, real square root [_ ~ ~]. 
28 AT = A gives xTA~x = (AX)T(Bx) < IIAxllllBxl1 by the Schwarz inequality. 

BT = -B gives -xT BAx = (Bx)T(Ax) < IIAxIIIIBxll. Add to get Heisenberg's 
Uncertainty Principle when AB - BA = I. Position-momentum, also time-energy. 

32 If A = SAS-I then (A - Al/)··· (A - AnI) equals S(A - AII)··· (A - AnI)S-l. 
The factor A - A j I is zero in row j. The product is zero in all rows = zero matrix. 

33 A = 2, -1, ° are in A and the eigenvectors are in S (below). A k = SA k S-l is 

[
2 1 0] 1 [2 1 1] 2k [4 2 2] (I)k [ 1 -1 -1] 1 -1 1 Ak- 2 -2 -2 =- 2 1 1 + - -1 1 1 
1 -1 -1 6 ° 3 -3 6 2 1 1 3 -1 1 1 

Checkk = 4. The (2,2) entry of A4 is 24/6+ (-1)4/3 = 18/6 = 3. The 4-step paths 
that begin and end at node 2 are 2 to 1 to 1 to 1 to 2, 2 to 1 to 2 to 1 to 2, and 2 to 1 to 
3 to 1 to 2. Much harder to find the eleven 4-step paths that start and end at node 1. 
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35 B has A = i and -i, so B4 has A 4 = 1 and 1 and B4 = I. C has A = (1 ± -.!3i)/2. 
This is exp(±ni/3) so A3 = -1 and -1. Then C 3 = -I and C 1024 = -C. 

37 Columns of S times rows of AS- I will give r rank-l matrices (r = rank of A). 

Problem Set 6.3, page 325 

1 UI = e4t [~l U2 = et [_~ l Ifu(O) = (5,-2), thenu(t) = 3e4t [~] + 2et [-~ l 
4 d (v + w) / d t = (w - v) + (v - w) = 0, so the total v + w is constant. A = [- ~ _!] 

Al = O. [1] [1] v(1) = 20 + lOe-
2 

v(oo) = 20 
has A2 = -2 wIth Xl = 1 ' X2 = -1 ; w(l) = 20 - lOe-2 w(oo) = 20 

8 [~ - i] has Al = 5, X I = [i l A2 = 2, X 2 = [i l rabbits r (t) = 20eSt + lOe2t , 

wet) = WeSt +20e2t . The ratio of rabbits to wolves approaches 20/10; eSt dominates. 

12 A = [_~ ~ ] has trace 6, det 9, A = 3 and 3 with one independent eigenvector (1,3). 

14 When A is skew-symmetric, Ilu(t)11 = lIeAtu(O)11 is lIu(O)II. So eAt is orthogonal. 

15 up = 4 and u(t) = cet + 4; up = [~] and u(t) = clet [:] + C2et [~] + [~l 
16 Substituting u = ect v gives cect v = Aect v - ect b or (A - c l)v = b or v = 

(A - cl)- I b = particular solution. If c is an eigenvalue then A - cl is not invertible. 

20 The solution at time t + T is also eA(t+T)u(O). Thus eAt times eAT equals eA(t+T). 

21 [1 4]_[1 4][1 0][1 4].[1 4][e
t 0][1 4]_[e

t 
4e

t
-4] o 0 - 0 -1 0 0 0 -1 ' 0 -1 0 1 0 -1 - 0 1 . 

[
et et - 1] 22 A2 = A gives eAt = 1 + At + !At2 + ... = 1 + (et - I)A = 0 1 . 

[ ] [ ] [. ] [1] [ t 1 1 1 1 1 0 1 - - At e 
24 A = 0 3 = 0 2 0 3 0 I· Then e = 0 

!(e3t _ et )] 
3t . e 

26 (a) The inverse of eAt is e-At (b) If Ax = AX then eAt X = eAt X and eAt =1= O. 

27 (x, y) = (e4t , e-4t ) is a growing solution. The correct matrix for the exchanged u = 
(y, x) is [_~ - ~ ]. It does have the same eigenvalues as the original matrix. 

28 Centering produces U n+I = [-~t 1 _ ~~t)2 ] Un. At I1t = 1, A = eirr
/

3 and 

e-irr / 3 both have A 6 = 1 so A6 = I. U 6 = A6U 0 comes exactly back to U o. 

29 First A has A = ±i and A4 = 1 An (l)n [1 - 2n -2n] L· h 
Second A has A = -1, -1 and = - 2n 211 + 1 mear growt . 
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30 With a = ~t /2 the trapezoidal step is U n+l = 1 2 [1 -2
a2 

1 2a 2] Un. 
1 +a - a -a 

Orthononnal columns => orthogonal matrix => II U n+ll1 = II Un II 
31 (a) (cos A)x = (cos A)x (b) A(A) = 2n and ° so cos A = 1, 1 and cos A = ! 

(c) u(t) = 3 (cos 2nt)(I, 1)+ 1 (cos Ot)(l, -1) [u' = Au has exp, u" = Au has cos] 

Problem Set 6.4, page 337 

3 A = 0,4, -2; unit vectors ±(O, 1, -1)/.J2 and ±(2, 1, I)/.J6 and ±(I, -1, -1)/-/3. 

5 - ! [ ~ _~ _ i] The columns of Q are unit eigenvectors of A 
Q - 3 -1 -2 2' Each unit eigenvector could be multiplied by -1 

8 If A 3 = ° then all A 3 = ° so all A = ° as in A = [g 6]. If A is symmetric then 

A 3 = Q A 3 Q T = ° gives A = 0. The only symmetric A is Q ° Q T = zero matrix. 

10 If x is not real then A = x T Ax / x T X is not always real. Can't assume real eigenvectors! 

11 [3 1] = 2 [ t -t]+4 [t t]; [9 12] = 0[_·64 -.48]+25 [.36 .48] 1 3 __ _ _ _ 12 16 .48 .36 .48 .64 
2 2 2 2 

14 M is skew-symmetric and orthogonal; A's must be i, i, -i, -i to have trace zero. 

16 (a) If Az = Ay and ATy = Az then B[y; -z] = [-Az; ATy] = -A[y; -z]. So 
-A is also an eigenvalue of B. (b) AT Az = AT(AY) = A2z. (c) A = -1, -1,1, 1; 
Xl = (1,0,-1,0), X2 = (0,1,0,-1), X3 = (I,O, 1,0), X4 = (0,1,0,1). 

[ 

1 1 0] [ 1 ° 1 ] Perpendicular for A 
19 A has S = 1 -1 ° ; B has S = ° 1 0. Not perpendicular for B ° ° 1 ° ° 2d since BT # B 

[
1 2] (b) True from AT = QAQT 

21 (a) False. A = ° 1 (c) True from A-I = QA -1 QT (d) False! 

22 A and AT have the s~me A's but the order of the x's can change. A = [_ ~ 6] has 

Al = i andA2 = -i with XI = (I,i) first for A but XI = (I,-i) first for AT. 

23 A is invertible, orthogonal, pennutation, diagonalizable, Markov; B is projection, di­
agonalizable, Markov. A allows QR, SAS-l , QAQT; B allows SAS- I and QAQT. 

24 Symmetry gives QAQT if b = 1; repeated A and no S if b = -1; singular if b = 0. 

25 Orthogonal and symmetric requires IAI = 1 and A real, so A = ±1. Then A = ±! or 

A = QAQT=[c~se -sine] [1 0] [c~se sine]=[c~S2e sin2e]. 
sm e cos e 0 -1 - sm e cos e sm 2e - cos 2e 

27 The roots of A2 + bA + C = ° differ by Jb 2 - 4c. For det(A + tB - AI) we have 
b = -3 - 8t and c = 2 + 16t - t 2. The minimum of b2 - 4c is 1/17 at t = 2/17. 
Then A2 - Al = 1/ Jri. 
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29 (a) A = QA Q T times AT = Q A T Q T equals A T times A because AA T = A T A 
(diagonal!) (b) step 2: The 1,1 entries ofTT T and TTT are lal2 and lal2 + Ib12. 
This makes b = 0 and T = A. 

30 all is [qll ... qln] [J"lqll ... An7ilnf < Amax (lqlll2 + ... + Iqlnl2) = Amax. 

31 (a) xT(Ax) = (AX)Tx = xTATX = -xTAx. (b) Z-TAzispureimaginary,itsreal 
part is x T Ax + yT Ay = 0 + 0 (c) detA = AI ... An > 0 : pairs of A'S = ib, -ib. 

Problem Set 6.5, page 350 

3 r;siti;e<d~fi~i~ [!~] [6 9!b2] = [! ~] [6 9~b2] [~ ~] = LDLT 

r;s~ti:e tefinite [ ~ ~] [~ c 4 8] = [~ ~] [~ c 0 8] [~ i] = L D LT. 

4 f(x, y) = x 2 + 4xy + 9y2 = (x + 2y)2 + 5y2; x 2 + 6xy + 9y2 = (x + 3y)2. 

8 A _ [3 6] _ [1 0] [3 0] [1 2] Pivots 3,4 outside squares,.eij inside. 
- 6 16 - 2 1 0 4 0 1 . x T Ax = 3(x + 2y)2 + 4y2 

10 A = [-i -~ -~] ~a1.Pi1~ts B = [-i -~ =~] is singular; B [~] = [~]. 
o -1 2 '2'3' -1 -1 2 1 0 

12 A is positive definite for c > 1; determinants c, c2 - 1, (c - 1)2 (c + 2) > O. B is 
never positive definite (determinants d - 4 and -4d + 12 are never both positive). 

14 The eigenvalues of A -1 are positive because they are 1/ A (A). And the entries of A-I 
pass the determinant tests. And x T A -1 X = (A -I x f A (A -1 x) > 0 for all x =1= o. 

17 If a jj were smaller than all A'S, A - a jj I would have all eigenvalues > 0 (positive 
definite). But A - a jj I has a zero in the (j, j) position; impossible by Problem 16. 

21 A is positive definite when s > 8; B is positive definite when t > 5 by determinants. 

[1 -1] [~ ] [I 1] 
22 R= 1./2

1 
0 -:n l =[~ nR=Q[6 ~]QT=[i n 

24 The ellipse x 2 + xy + y2 = 1 has axes with half-lengths 1/,JI = .J2 and .)2/3. 

25 A = CT 
C = [~ ~ l [: '2

8
5] = [~ ~] [6 ~] [~ i] and C = [~ j] 

29 HI = [~2 2{] is positive definite if x i- 0; FI = (!x2 + y)2 = 0 on the curve 

!X2 + y = 0; H2 = [6t ~] = [~ ~] is indefinite, (0, 1) is a saddle point of F2. 

31 If c > 9 the graph of z is a bowl, if c < 9 the graph has a saddle point. When c = 9 
the graph of z = (2x + 3y)2 is a "trough" staying at zero on the line 2x + 3y = O. 

32 Orthogonal matrices, exponentials eAt, matrices with det = 1 are groups. Examples of 
subgroups are orthogonal matrices with det = 1, exponentials eAn for integer n. 

34 The five eigenvalues of K are 2 - 2 cos k: = 2 - ,J3, 2 - 1,2, 2 + 1, 2 + ,J3 : 
product of eigenvalues = 6 = det K. 
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Problem Set 6.6, page 360 

1 B = G C G -I = G F-1 A F G -I so M = F G -1. C similar to A and B => A similar to B. 
6 Eight families of similar matrices: six matrices have A = 0, 1 (one family); three 

matrices have A = I, I and three have A = 0, ° (two families each!); one has A = 
1, -1; one has A = 2,0; two have A = !(1 ± .J5) (they are in one family). 

7 (a) (M-1AM)(M-1x) = M-1(Ax) = M-10 = 0 (b) Thenullspacesof A and 
of M-1 AM have the same dimension. Different vectors and different bases. 

8 Same A B A _ [0 1] dB _ [0 2] have the same line of eigenvectors 
Same S ut - ° ° an - ° ° and the same eigenvalues A = 0,0. 

10 J 2 - [c2 
2C] d Jk _ [ck 

kC
k
-

1
]. JO _ I d J- 1 _ [c- 1 -c-2

] 
- 0 c2 an - ° ck ' - an - 0 c-I· 

14 (1) Choose Mi = reverse diagonal matrix to get Mi-
1 Ji Mi = Ml in each block 

(2) MohasthosediagonalblocksMitogetMi)IJMo = JT. (3) AT = (M-1)TJTMT 
equals (M-l)T Mi)IJMoMT = (MMoMT)-1 A(MMoMT), and AT is similar to A. 

17 (a) False: Diagonalize a nonsymmetric A = SAS-1. Then A is symmetric and similar 

(b) True: A singular matrix has A = 0. (c ) False: [_ ~ b ] and [~ - b ] are similar 

(they have A = ± 1) (d) True: Adding I increases all eigenvalues by 1 

18 AB = B-1(BA)B so AB is similar to BA. If ABx = AX then BA(Bx) = A(Bx). 
19 Diagonal blocks 6 by 6, 4 by 4; AB has the same eigenvalues as BA plus 6 - 4 zeros. 

22 A = MJM- 1,An = MJ n M-l = 0 (each Jk has l's on the kth diagonal). 
det(A - AI) = An so In = ° by the Cayley-Hamilton Theorem. 

Problem Set 6.7, page 371 

[1 3] [J50 0] [I 2] 
1 A=U:EVT=[UI U2]["1 0] [VI V2r= 3~1 0 0 2,.[51 

T T [2 \ I]. 2 3 +.J5 2 3 -.J5 But A is 
4 A A = AA = 1 I has eIgenvalues a1 = 2 ,a2 = 2 . indefinite 

0"1 = (1 + .J5)/2 = Al (A), 0"2 = (.J5 - 1)/2 = -Az(A); ul = VI but U2 = -V2. 
5 A proof that eigshow finds the SVD. When VI = (1,0), V 2 = (0,1) the demo finds 

A V I and A V 2 at some angle e. A 90° tum by the mouse to V 2, - V I finds A V z and 
-A V I at the angle Jr - e. Somewhere between, the constantly orthogonal VI and V2 
must produce AVI and AV2 at angle Jr/2. Those orthogonal directions give UI and U2. 

9 A = UVT since all aj = 1, which means that :E = I. 
14 The smallest change in A is to set its smallest singular value az to zero. 

15 The singular values of A + I are not O"j + 1. Need eigenvalues of (A + I)T(A + I). 

17 A = U:EVT = [cosines including U4] diag(sqrt(2 - ../2,2,2 + ../2)) [sine matrix]T. 
A V = U:E says that differences of sines in V are cosines in U times 0" 'so 
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Problem Set 7.1, page 380 

3 T(v) = (0,1) and T(v) = VI V2 are not linear. 

4 (a) S(T(v)) = v (b) S(T(vt) + T(V2)) = S(T(vt)) + S(T(V2)). 

5 Choose v = (1,1) and w = (-1,0). T(v) + T(w) = (0,1) but T(v + w) = (0,0). 

7 (a) T(T(v)) = v (b) T(T(v)) = v + (2,2) (c) T(T(v)) = -v (d) T(T(v)) = 
T(v). 

10 Not invertible: (a) T(1, 0) = 0 (b) (0,0, 1) is not in the range (c) T(O, 1) = O. 

12 Write vas a combination e(I, 1) + d(2, 0). Then T(v) = e(2,2) + d(O, 0). T(v) = 
(4,4); (2,2); (2,2); if v = (a, b) = b(1, 1) + a;,b (2, 0) then T(v) = b(2,2) + (0,0). 

16 No matrix A gives A [~ g] = [g 6]. To professors: Linear transformations on 

matrix space come from 4 by 4 matrices. Those in Problems 13-15 were special. 

17 (a) True (b) True (c) True (d) False. 

19 T(T- 1(M)) = M so T-I(M) = A-1MB- I • 

20 (a) Horizontal lines stay horizontal, vertical lines stay vertical (b) House squashes 
onto a line (c) Vertical lines stay vertical because T(l, 0) = (a 11 , 0). 

27 Also 30 emphasizes that circles are transformed to ellipses (see figure in Section 6.7). 

29 (a) ad - be = ° (b) ad - be > ° (c) lad - bel = 1. If vectors to two 
comers transform to themselves then by linearity T = I. (Fails if one comer is (0,0).) 

Problem Set 7.2, page 395 

3 (Matrix A)2 = B when (transformation T)2 = S and output basis = input basis. 

5 T(VI + V2 + V3) = 2Wl + W2 + 2W3; A times (1, 1, 1) gives (2,1,2). 

6 v = e(v2 -V3) gives T(v) = 0; nullspace is (0, e, -c); solutions (1,0,0) + (0, e, -c). 

8 For T2(V) we would need to know T(w). If the w's equal the v's, the matrix is A2. 

12 (c) is wrong because WI is not generally in the input space. 

14 (a) [~ j] (b) [_~ ~ ~] = inverse of (a) (c) A [~] must be 2A [j]. 
16 MN = [: ~] [~ ~r = p -n 
18 (a, b) = (cos e, - sin e). Minus sign from Q-I = QT. 

20 W2(X) = 1 - x 2; W3(X) = ~(x2 - x); Y = 4wI + 5w2 + 6W3. 

23 The matrix M with these nine entries must be invertible. 

271fT is not invertible, T(vt), ... , T(vn ) is not a basis. We couldn't choose Wi = T(vj). 

30 Stakes (x,y) to (-x,y). S(T(v)) = (-1,2). S(v)=(-2, 1) and T(S(v)) =(1,-2). 

34 The last step writes 6, 6, 2, 2 as the overall average 4, 4, 4, 4 plus the difference 2, 2, 
-2, -2. Therefore el = 4 and e2 = 2 and C3 = 1 and C4 = 1. 
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35 The wavelet basis is (1, 1, 1, 1, 1, 1, 1, 1) and the long wavelet and two medium wavelets 
(1,1, -1, -1, 0, 0, 0, 0), (0,0,0,0,1,1, -1, -1) and 4 wavelets with a single pair 1,-1. 

36 If Vb = W c then b = V-I W c. The change of basis matrix is V-I W. 

37 Multiplication by [ ~ ~] with this basis is represented by 4 by 4 A = [~; ~ ~ ] 
38 If WI = AVI and W2 = AV2 then all = a22 = 1. All other entries will be zero. 

Problem Set 7.3, page 406 

AVI = ~ [1~] = O"I Ul and AV2 = O. Ul = ~o [j] and AATul = 50 Ul· 

3 A = Q H = ~ [i -j] Jso [~g ~g ]. H is semidefinite because A is singular. 

4 A+ - V [1/J50 0] UT _ ..L [1 3]. A+A _ [.2 .4] AA+ _ [.1 .3] - ° ° - 50 2 6 ' -.4.8 ' -.3.9 . 
7 [IT, u, IT2U2] [:n = IT, U, v I + IT2U2VJ. In genera! this is IT, U, v I + ... + IT,U,V ~. 

9 A + is A -1 because A is invertible. Pseudoinverse equals inverse when A -1 exists! 

11 A=[1][S 0 O]VTandA+=v[·g]=pnA+A=[:!~ :~ ~lAA+=[ll 
13 IfdetA = Othenrank(A) < n; thusrank(A+) < n anddetA+ = 0. 

16 x + in the row space of A is perpendicular to x - x + in the nullspace of AT A -
nullspace of A. The right triangle has c2 = a2 + b2 . 

17 AA+ P = p, AA+e = 0, A+ AXr = Xr, A+ AXn = O. 

19 L is determined by .e21 . Each eigenvector in S is determined by one number. The 
counts are 1 + 3 for LU, 1 + 2 + 1 for LDU, 1 + 3 for QR, 1 + 2 + 1 for U:EVT, 
2 + 2 + ° for SAS-1

• 

22 Keep only the r by r comer :Er of:E (the rest is all zero). Then A = U:EVT has the 
required form A = fJ Ml :ErMJVT with an invertible M = Ml :ErMJ in the middle. 

23 [0 A] [u] _ [ Av ] _ [u] The singular values of A are 
AT ° v - AT U - 0" V . eigenvalues of this block matrix. 
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Problem Set 8.1, page 418 

3 The rows of the free-free matrix in equation (9) add to [0 ° 0] so the right side needs 
II + 12 + h = 0. f = (-1, 0,1) gives C2U l -C2U 2 = -1, C3U2 -C3U3 = -1, 0= 0. 
Thenuparticular = (-c2"1_ C31,-C3

1,0). Add any multipleofunullspace = (1,1,1). 

4 f -:x (C(x) ~:) dx=- [C(X) ~:I =0 (bdry cond) so we need f f(x) dx=O. 

6 Multiply A I CIA 1 as columns of A I times c's times rows of A 1. The first 3 by 3 

"element matrix" Cl E 1 = [1 ° O]T Cl [1 ° 0] has Cl in the top left comer. 

8 The solution to -u" = I with u(O) = u(I) = ° is u(x) = 4(x - x 2
). At x = !, ~, ~, ~ 

this gives U =2,3,3,2 (discrete solution in Problem 7) times (L\X)2 = 1/25. 
11 Forwardlbackward/centered for du / dx has a big effect because that term has the large 

coefficient. MATLAB: E = diag(ones(6, 1), 1); K = 64 * (2 * eye(7) - E - E'); 
D = 80 * (E- eye(7»; (K + D)\ones(7, 1); % forward; (K - D')\ones(7, 1); 
% backward; (K + D/2 - D' /2)\ones(7, 1); % centered is usually the best: more 
accurate 

Problem Set 8.2, page 428 

1 A = [ 1 J n nullspace contains G 1 m is not orthogonal to that nUllspace. 

2 AT y = 0 for y = (1, -1,1); current along edge 1, edge 3, back on edge 2 (full loop). 

5 Kirchhoff's Current Law AT y = f is solvable for f = (1, -1, 0) and not solvable 
for f = (1,0,0); f must be orthogonal to (1,1,1) in thenullspace: 11 + 12+ h = 0. 

6 ATAx = [ : =~ =1] x = H] = f produces x = [-1] + [H porentirus 

x = 1, -1, ° and currents - Ax = 2, 1, -1; f sends 3 units from node 2 into node 1. 

7 AT [1 2 ] A = [-i, -j =~]; f = [ b] yields x = [5{4] + any [~]; 
2 -2 -2 4 -1 7/8 C 

'1 51 7 d CA 131 potentia s x = 4' '8' an currents - x = 4' 4' 4' 

9 Elimination on Ax = b always leads to y T b = ° in the zero rows of U and R: 
-b1 + b2 - b3 = ° and b3 - b4 + b5 = ° (those y's are from Problem 8 in the left 
nullspace). This is Kirchhoff's Voltage Law around the two loops. 

[ 
2 -1 -1 0] diagonal entry = number of edges into the node 

11 AT A _ -1 3 -1 -1 the trace is 2 times the number of nodes 
- -1 -1 3 -1 off-diagonal entry = -1 if nodes are connected ° -1 -1 2 AT A is the graph Laplacian, ATCA is weighted by C 

[ 

4 -2 -2 0] [ 1] gives four potentials x = (.2.. 1. 1. 0) -2 8 -3 -3 ° 12' 6' 6' 
13 ATCAx = -2 -3 8 -3 x = ° I grounded X4 = ° and solved for x ° -3 -3 6 -1 currents Y = -CAx = (~,~, 0,4,4) 



546 Solutions to Selected Exercises 

17 (a) 8 independent columns (b) f must be orthogonal to the nullspace so J's add 
to zero (c) Each edge goes into 2 nodes, 12 edges make diagonal entries sum to 24. 

Problem Set 8.3, page 437 

2 A = [:~ -~] [1 .75] [_.! .!}AOO = [:~ =~] [~ ~] [-.! .!] = [:~ :~l 
3 A = 1 and .8, x = (1,0); 1 and -.8, x = (~, ~); 1, i, and i, x = (-~,~, ~). 

5 The steady state eigenvector for A = 1 is (0,0, 1) = everyone is dead. 

6 Add the components of Ax = AX to find sum S = AS. If A =f. 1 the sum must be S = 0. 

7 ( 5)k 0· Ak Aoo • A [.6 + .4a .6 - .6a] . h a < 1 
. ~ gIves ~ ,any = .4 -.4a .4 + .6a WIt .4 + .6a > ° 

9 M2 is still nonnegative; [1 ... 1] M = [1 ... 1] so multiply on the right by M to 
find [1 ... 1 ]M2 = [1 ... 1] => columns of M2 add to 1. 

10 A = 1 and a + d - 1 from the trace; steady state is a mUltiple of x I = (b, I - a). 

12 B has A = ° and -.5 with Xl = (.3, .2) and X2 = (-I, I); A has A = I so A - / has 
A = 0. e-·5t approaches zero and the solution approaches CleOtxl = CIXI. 

13 X = (1,1, I) is an eigenvector when the row sums are equal; Ax = (.9, .9, .9). 

15 The firsttwo A's have Amax < I; p = [~] and [1~~} / - [:~ ~] has no inverse. 

16 A = 1 (Markov), ° (singular), .2 (from trace). Steady state (.3, .3,.4) and (30,30,40). 

17 No, A has an eigenvalue A = I and (/ - A)-1 does not exist. 

19 A times S-1 IlS has the same diagonal as S-1 IlS times A because A is diagonal. 

20 If B > A >0 and Ax =Amax(A)x >0 then Bx > Amax(A)x and Amax(B) > Amax(A). 

Problem Set 8.4, 'page 446 

1 Feasible set = line segment (6,0) to (0,3); minimum cost at (6,0), maximum at (0, 3). 

2 Feasible set has comers (0,0), (6,0), (2,2), (0,6). Minimum cost 2x - y at (6,0). 

3 Only two comers (4,0,0) and (0,2,0); let Xi ~ -00, X2 = 0, and X3 = Xl - 4. 

4 From (0,0,2) move to x = (0, I, 1.5) with the constraint Xl + X2 + 2X3 = 4. The new 
cost is 3(1) + 8(1.5) = $15 so r = -1 is the reduced cost. The simplex method also 
checks x = (1,0,1.5) with cost 5(1) + 8(1.5) = $17; r = 1 means more expensive. 

5 c = [3 5 7] has minimum cost 12 by the Ph.D. since x = (4,0,0) is minimizing. 
The dual problem maximizes 4y subject to y < 3, y < 5, y < 7. Maximum = 12. 

8 y Tb < Y T Ax = (AT y)T X < cT x. The first inequality needed y > ° and Ax - b > 0. 
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Problem Set 8.5, page 451 

1 f;1r cos«(j +k)x) dx = [sin(Ytkk)X) J:1r 

= ° and similarly f;1r cos«(j -k)x) dx = ° 
Notice j - k ::j:. ° in the denominator. If j = k then f;1r cos2 jx dx = n. 

4 f~I (l)(x 3 - ex) dx = ° and f~I (x 2 - ~)(x3 - ex) dx = 0 for all e (odd functions). 

Choose e so that f~I x(x3 - ex) dx = [!x5 - ~x3E_I = ~ - e~ = 0. Then e = ~. 
5 The integrals lead to the Fourier coefficients a I = 0, bi = 4/ n, b2 = 0. 

6 From eqn. (3) ak = ° and bk = 4/nk (odd k). The square wave has IIfl12 = 2n. 
Then eqn. (6) is 2n =n(l6/n2)( 11 + 31 + 512 + ... ). That infinite series equals n 2/8. 

8 IIvl12 = 1+!+~+1+'" = 2so Ilvll =../2; IIvll2 = l+a2+a4 + ... = 1/(l-a2) 

so Ilvll = I/Jl- a2; f;1r (1 + 2sinx + sin2 x) dx = 2n + ° + n so Ilfll = ,J3ii. 
9 (a) f(x) = (1 + square wave)/2 so the a's are !, 0, 0, ... and the b's are 2/n, 0, 

-2/3n, 0, 2/5n, . . . (b) ao = f;1r x dx/2n = n, all other ak = 0, bk = -2/ k. 

11 cos2 x - .!. + .!. cos 2x' cos(x + !L) = cos X cos !L - sin x sin!L = ! cos x - J3 sin x -2 2 ' 3 3 3 2 2 . 
1 1 sin(kh/2) 1 

13 ao = - f F(x) dx = -, ak = kh/ ~ - for delta function; all bk = 0. 
2n 2n n 2 n 

Problem Set 8.6, page 458 

3 If (13 = ° the third equation is exact. 

4 0,1,2 have probabilities ~,!, ~ and (12 = (0 - 1)2~ + (1- 1)2! + (2 - 1)2~ = !. 
5 Mean (!, !). Independent flips lead to I; = diag(~, ~). Trace = (lt~tal = !. 
6 Mean m = Po and variance (12 = (1 - PO)2 Po + (0 - Po?(l - Po) = po(1- Po). 

7 Minimize P = a2(1f + (1-a)2(1i at p' = 2a(lf-2(1-a)(li = 0; a = (Ii /((If+(li) 
recovers equation (2) for the statistically correct choice with minimum variance. 

8 MultiplyLI;LT = (ATI;-lAr1ATI;-1I;I;-lA(ATI;-lA)-1 = P = (ATI;-IA)-I. 

9 Row 3 = -row 1 and row 4· = -row 2: A has rank 2. 

Problem Set 8.7, page 464 

1 (x, y, z) has homogeneous coordinates (ex, ey, ez, e) for e = 1 and all e ::j:. 0_ 

4 S = diag (e , e, e, 1); row 4 of STand T S is 1, 4, 3, 1 and e, 4e, 3e, 1; use v T S ! 

[
1/8.5 ] 

5 S = 1/11 1 for a 1 by 1 square, starting from an 8.5 by 11 page. 

9 n = -, -, - has P = 1- nnT = - -4 5 -2 . Notice Ilnll = 1. (2 2 1) 1 [ 5 -4 -2] 
3 3 3 9 -2 -2 8 
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[ 

5 -4 -2 
-4 5-2 

10 We can choose (0,0,3) on the plane and multiply T_PT+ = ~ -2 -2 8 

663 

11 (3,3,3) projects to ~(-1, -1, 4) and (3,3,3,1) projects to (~,~, ~, 1). Row vectors! 

13 That projection of a cube onto a plane produces a hexagon. 

14 (3 3 3)(/ - 2nnT) = (~ ~ ~) [-~ -~ =!] = (-~ -~ -~). 
" 3'3'3 3' 3' 3 -4 -4 7 

15 (3,3,3,1) -+ (3,3,0,1) -+ (-~, -~, -~, 1) -+ (-~, -~,~, 1). 

17 Space is rescaled by lie because (x, y, z, c) is the same point as (xl c , y Ie, z Ie, 1). 

Problem Set 9.1, page 472 

1 Without exchange, pivots .001 and 1000; with exchange, 1 and -1. When the pivot is 

larger than the entries below it, all Itij I = I entry fpivotl < I. A = [~ ~ - ~ ] . 
-I 1 1 

4 Thelargestllxll = IIA-1bll is IIA-1 11 = l/AminSinceAT = A;largesterrorl0-16IAmin' 

5 Each row of V has at most w entries. Then w multiplications to substitute components 
of x (already known from below) and divide by the pivot. Total for n rows < wn. 

6 The triangular L -1, v-I, R-1 need ~n2 multiplications. Q needs n 2 to multiply the 
right side by Q-l = QT. SO QRx = b takes 1.5 times longer than LV x = b. 

7 V V-I = /: Back substitution needs ~ j 2 multiplications on column j, using the j 
by j upper left block. Then ~(12 + 22 + ... + n2) ~ ~(~n3) = total to find V-I. 

10 With 16-digit floating point arithmetic the errors Ilx - xcomputedll for e = 10-3 , 10-6 , 

10-9 , 10-l2, 10-15 are of order 10-16 , 10-11 ,10-7,10-4 ,10-3 . 

1. -3 1 [10 14] A = 4; use - () 
11 (a)cos() = ..flO' SI~() = ..flO' R = Q21A =..flO 0 8 (b) x = (l,-3)/.JiO 

13 Q ij A uses 4n multiplications (2 for each entry in rows i and j). By factoring out cos () , 
the entries 1 and ± tan () need only 2n multiplications, which leads to ~n3 for QR. 

Problem Set 9.2, page 478 

1 IIAII = 2, IIA-1 11 = 2, c = 4; IIAII = 3, IIA-1 11 = 1, c = 3; IIAII = 2 + ../2 = 
Amax for positive definite A, IIA-1 11 = ljAmin, c = (2 + ..(2)/(2 - ..(2) = 5.83. 

3 For the first inequality replace x by B x in II Ax II < II A 1111 x II; the second inequality is 
just IIBxl1 < IIBllllxll. Then IIABII = max(IIABxll/llxll) < IIAIIIIBII· 

7 The triangle inequality gives II Ax + B x II < II Ax II + II B x II. Divide by II x II and take 
the maximum over all nonzero vectors to find II A + B II < II A II + II B II. 
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8 If Ax = AX then II Ax 11/ II x II = IA I for that particular vector x. When we maximize 
the ratio over all vectors we get IIA II > IAI. 

13 The residual b - Ay = (10-7 ,0) is much smaller than b - Az = (.0013, .0016). But 
z is much closer to the solution than y. 

14 detA = 10-6 so A-I = 103 [-~i~ -~~~ lliAIl > 1, IIA-III > 106
, then c > 106 . 

16 xr+···+x; is not smaller than max(xl) and not larger than (ixII+· ··+lxnI)2 = Ilxlli. 
xr + ... + x; < n max(xl) so IIxll < .Jilllxli oo . Choose Yi = signxi = ±l to get 
Ilxlli = X· Y < Ilxllllyll = .Jilllxll· x = (1, ... ,1) has Ilxlli = .Jil Ilxll· 

Problem Set 9.3, page 489 

2 If Ax = AX then (l-A)x = (l-A)x. Real eigenvalues of B = I -A have II-AI < 1 
provided A is between 0 and 2. 

6 Jacobi has S-IT = ~ [~ b] with IAlmax = ~. Small problem, fast convergence. 

7 Gauss-Seidel has S-'T = [~ t] with 1).lm" = ~ which is (1).lmax for Jacobi)'. 

9 Set the trace 2-2w + iw2 equal to (w -1) + (w -1) to find Wopt = 4(2-.J3) ~ 1.07. 
The eigenvalues W - 1 are about .07, a big improvement. 

15 In the J. th component of Ax I A I sin j1r = 2 sin j1r - sin (j -I)1r - sin (j + I)1r , n+I n+I n+I n+I . 
The last two terms combine into -2 sin ,1;1 cos n~I. Then Al = 2 - 2 cos n~I. 

17 A-I = ~ [i ~] givesul = ~ [i].U2 = ~ [~].U3 = 2
1
7 [~j] --? Uoo = [~j~l 

18 R = QT A = [1 cos ~ ~in 8] and Al = RQ = [cos 8(1.+ sin
2 

8) - sin
3
.8 ]. 

o - sm 8 - sm3 8 - cos 8 sm2 8 

20 If A - cI = QR then Al = RQ + cI = Q-I(QR + c1)Q = Q-l AQ. No change 
in eigenvalues because A 1 is similar to A. 

21 Multiply Aq j = b j -1 q j -1 + a j q j + b j q j + 1 by q} to find q} Aq j = a j (because the 
q's are orthonormal). The matrix form (multiplying by columns) is AQ = QT where 
T is tridiagonal. The entries down the diagonals of T are the a's and b's. 

23 If A is symmetric then Al = Q-I AQ = QT AQ is also symmetric. Al = RQ = 
R(QR)R-I = RAR-I has Rand R-I upper triangular, so Al cannot have nonzeros 
on a lower diagonal than A. If A is tridiagonal and symmetric then (by using symmetry 
for the upper part of AI) the matrix Al = RAR-1 is also tridiagonal. 

26 If each center au is larger than the circle radius rj (this is diagonal dominance), then 
o is outside all circles: not an eigenvalue so A-I exists. 
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Problem Set 10.1, page 498 

2 In polar form these are ,J5e iO , Se2iO , Jse- iO , -J5. 

4 Iz x wi = 6, Iz + wi < S, Iz/wl = ~, Iz - wi < S. 

5a+ib=.J3+1.i l.+.J3i i _1.+.J3 i · W 12 _1 2 2'2 2" 2 2' -. 

9 2+i; (2+i)(l +i) = 1 +3i; e-in/ 2 = -i; e-in = -1; I+~ = -i; (_i)103 = i. 

10 z + z is real; z - z is pure imaginary; z z is positive; z /z has absolute value 1. 

12 (a) When a = b = d = I the square root becomes.J4C; A is complex if e < 0 
(b) A = 0 and A = a + d when ad = be (c) the A'S can be real and different. 

13 Complex A'S when (a+d)2 < 4(ad-be); write (a+d)2-4(ad-be) as (a-d)2+4be 
whiCh is positive when be > O. 

14 det(P - AI) = A4 - 1 = 0 has A = I, -1, i, -i with eigenvectors (1, 1, 1,1) and 
(1, -1,1, -1) and (1, i, -1, -i) and (1, -i, -1, i) = columns of Fourier matrix. 

16 The symmetric block matrix has real eigenvalues; so i A is real and A is pure imaginary. 

18 r = 1, angle 1- - 8; mUltiply by eiO to get ein/2 = i. 

21 cos 38 = Re[(cos 8+i sin 8)3] =cos3 8-3 cos 8 sin2 8; sin38 = 3 cos2 8 sin 8-sin3 8. 

23 ei is at angle 8 = 1 on the unit circle; Itel = Ie; Infinitely many i e = ei(n/2+2nn)e. 

24 (a) Unit circle (b) Spiral in to e-2n (c) Circle continuing around to angle 8 = 2n2. 

Problem Set 10.2, page 506 

3 z = multiple of (1 +i, 1 +i, -2); Az = 0 gives ZH AH = OH so z (notz!) is orthogonal 
to all columns of AH (using complex inner product ZH times columns of AH). 

4 The four fundamental subspaces are now C(A), N(A), C(AH), N(AH). AH and not AT. 

5 (a) (AH A)H = AH AHH = AHA again (b) If AH Az = 0 then (zH AH)(Az) = O. 
This is IIAzll2 = 0 so Az = O. The nullspaces of A and AH A are always the same. 

6 (a) False A - U - [0 1 ] (b) True: -i is not an eigenvalue when A = AH. 
(c) False - - -1 0 

10 (1, 1, 1), (1, e2ni /3 , e4ni/3 ), (1, e4ni /3 , e2ni /3 ) are orthogonal (complex inner product!) 
because P is an orthogonal matrix-and therefore its eigenvector matrix is unitary. 

11 C = [~ ; ~] = 2 + 5P + 4p 2 has the Fourier eigenvector matrix F. 
S 4 2 

The eigenvalues are 2 + 5 + 4 = 11,2 + Se2ni /3 + 4e4ni /3 , 2 + Se4ni /3 + 4e8ni /3 • 

13 Determinant = product of the eigenvalues (all real). And A = AH givesdetA = detA. 

15 A __ 1 [1 -1 + i] [2 0] _1 [ 1 
- J3 1 + i 1 0 -1 J3 -1 - i 

1- i] 
1 . 
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18 V=l.[I+v'3 -1+i][1 O]l.[I+v'3 l-i] ·hL2 =6 213 
L 1 + i 1 + v'3 ° -1 L -1 _ i 1 + V3 WIt + V J. 

Unitary means IAI = 1. V = VH gives real A. Then trace zero gives A = 1 and -1. 

19 The v's are columns of a unitary matrix U, so U H is U-I. Then z = UUHz = 
(multiply by columns) = VI (vrz) + ... + Vn(V~Z): a typical orthonormal expansion. 

20 Don't multiply (e-ix)(eix ). Conjugate the first, then jg7C e2ix dx = [e2ix /2i]57C = 0. 

21 R + is = (R + is)H = RT - iST; R is symmetric but S is skew-symmetric. 

24 [1] and [-1]· an [eiB]. [ a. b + iC]. [ w ei.cfJz] with Iwl
2 + Izl2 = 1 

, Y 'b-1C d ' -z e1cfJw andanyangJe¢ 

27 Unitary UHU = f means (AT -iBT)(A+iB) = (AT A+BT B)+i(AT B-BT A) = f. 
AT A + BT B = f and AT B - BT A = ° which makes the block matrix orthogonal. 

30 A = [1_/ 1 2 i] [6 ~] ~ [21~~i -~] = SAS- I
. Note real A = 1 and 4. 

Problem Set 10.3, page 514 

8 C -+ (1,1,1,1,0,0,0,0) -+ (4,0,0,0,0,0,0,0) -+ (4,0,0,0,4,0,0,0) = Fgc. 
C -+ (0,0,0,0,1,1, 1, 1) -+ (0,0,0,0,4,0,0,0) -+ (4,0,0,0,-4,0,0,0) = FgC. 

9 If W 64 = 1 then w 2 is a 32nd root of 1 and .jW is a 128th root of 1: Key to FFT. 

13 el = Co + CI + C2 + C3 and e2 = Co + cli + c2i2 + C3i3; E contains the four 
eigenvalues of C = FEF- I because F contains the eigenvectors. 

14 Eigenvaluesel = 2-1-1 = 0, e2 = 2-i _i3 = 2, e3 = 2- (-1) - (-1) = 4, 
e4 = 2 - i 3 

- i 9 = 2. Just transform column ° of C. Check trace ° + 2 + 4 + 2 = 8. 

15 Diagonal E needs n multiplications, Fourier matrix F and F- I need ~n log2 n multi­
plications each by the FFT. The total is much less than the ordinary 112 for C times x. 




